Skip to main content
Log in

Preparation, Structure, and Properties of Track-Etched Membranes Based on Polylactic Acid

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

New applications, in particular in medicine, require the creation of track-etched membranes (TMs) with fundamentally new properties. There are well-known TMs made from polycarbonate, polyimide, polypropylene, polyethylene terephthalate, polyethylene naphthalate, and polyvinylidene fluoride; that is, polymers characterized by high chemical resistance. This study focuses on the development of a membrane made of the biodegradable polymer polylactic acid (PLA). Films prepared from a 1% solution of polylactic acid with a molecular weight of Mw = 121000 g/mol were taken as the initial matrix for TM fabrication. The films were irradiated with 1.2-MeV Xe ions at a fluence of 3.1 × 107 cm−2 on an IC-100 cyclotron. Etching was carried out in NaOH solutions of various concentrations (0.1, 1, or 2 mol/L) with varying the temperature from 18 to 70°С and the treatment time from 5 to 30 min. It has been revealed that the optimal treatment conditions for irradiated PLA films are etching in 1 M NaOH at a temperature of 44°C. This mode, with a time variation from 10 to 30 min, makes it possible to obtain through pores with a diameter of 0.6 to 1.5 µm with channel geometry close to cylindrical. It has been found that an increase in the etching time over 20 min leads to a decrease in the roughness of both membrane sides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. E. Piskin, Degradable Polymers (Springer, Dordrecht, 2015).

    Google Scholar 

  2. M. S. Lopes, A. L. Jardini, and M. R. Filho, Proc. Eng. 42, 1402 (2012).

    Article  Google Scholar 

  3. H. Iesavand, M. Rahmati, D. Afzali, and S. Modir, Mater. Sci. Eng. C 105, 110010 (2019).

    Article  CAS  Google Scholar 

  4. A. K. Sharma, A. Arya, P. K. Sahoo, and D. K. Majumdar, Mater. Sci. Eng. C 67, 779 (2016).

    Article  CAS  Google Scholar 

  5. P. R. Pawar, S. U. Tekale, S. U. Shisodia, J. T. Totre, and A. J. Domb, Recent Pat. Regener. Med. 4, 40 (2014).

    CAS  Google Scholar 

  6. T. Yasukawa, Y. Ogura, E. Sakurai, Y. Tabata, and H. Kimura, Adv. Drug Delivery Rev. 57, 2033 (2005).

    Article  CAS  Google Scholar 

  7. E. S. Trofimchuk, M. A. Moskvina, O. A. Ivanova, V. V. Potseleev, V. A. Demina, N. I. Nikonorova, and S. N. Chvalun, Mendeleev Commun. 30, 171 (2020).

    Article  CAS  Google Scholar 

  8. A. B. Yaroslavtsev, Membranes and Membrane Technologies (Nauchnyi mir, Moscow, 2013) [in Russian].

  9. E. Ferain and R. Legras, Nucl. Instrum. Methods Phys. Res., Sect. B 208, 115 (2003).

    CAS  Google Scholar 

  10. L. I. Kravets, S. N. Dmitriev, and P. Yu. Apel, Vysokomol. Soed. 1 (2000).

  11. X. He, Z. Sun, and C. Wan, Radiat. Meas. 41, 112 (2006).

    Article  CAS  Google Scholar 

  12. H. W. Ballew, Basics of Filtration and Separation (Nuclepore Corporation, 1978).

    Google Scholar 

  13. P. Apel, Radiat. Meas. 34, 559 (2001).

    Article  CAS  Google Scholar 

  14. V. A. Fiodorov, A. B. Vasiliev, V. P. Nazmov, B. G. Goldenberg, S. A. Bedin, and V. V. Berezkin, Membr. Membr. Technol. 1, 27 (2019).

    Article  CAS  Google Scholar 

  15. M. Barsbay and O. Guven, Radiat. Phys. Chem. 105, 26 (2014).

    Article  CAS  Google Scholar 

  16. I. V. Korolkov, Y. G. Gorina, A. B. Yeszhanov, Ar. L. Kozlovski, and M. V. Zdorovets, Mater. Chem. Phys. 205, 55 (2018).

    Article  CAS  Google Scholar 

  17. A. Friebe and M. Ulbricht, Langmuir 23, 10316 (2007).

    Article  CAS  Google Scholar 

  18. T. V. Ryazantseva and L. I. Kravets, Byul. Sib. Med. 11, 71 (2012).

    Article  Google Scholar 

  19. J. E. Hobbie, R. J. Daley, and S. Jasper, Appl. Environ. Microbiol. 33, 1225 (1977).

    Article  CAS  Google Scholar 

  20. P. Yu. Apel, I. V. Blonskaya, S. N. Dmitriev, O. L. Orelovitch, and B. Sartowska, J. Membr. Sci. 282, 393 (2006).

    Article  CAS  Google Scholar 

  21. N. M. Ivanova, E. O. Filippova, D. A. Karpov, and V. F. Pichugin, Inorg. Mater. 11, 377 (2020).

    Article  Google Scholar 

  22. S. P. Tretyakova, P. Yu. Apel, L. V. Jolos, T. I. Mamonova, and V. V. Shirkova, in Solid State Nuclear Track Detectors (Pergamon Press, Oxford, 1980).

    Google Scholar 

  23. A. de la Mata, M. A. Mateos-Timoneda, T. Nieto-Miguel, S. Galindo, M. Lopez-Paniagua, J. A. Planell, E. Engel, and M. Calonge, Colloids Surf., B 177, 121 (2019).

    Article  CAS  Google Scholar 

  24. M. T. Khorasani, H. Mirzadeh, and S. Irani, Radiat. Phys. Chem. 77, 280 (2008).

    Article  CAS  Google Scholar 

  25. Y. Zhao, A. Fina, A. Venturello, and F. Geobaldo, Appl. Surf. Sci. 283, 181 (2013).

    Article  CAS  Google Scholar 

  26. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).

    CAS  Google Scholar 

  27. P. Yu. Apel’, T. I. Soboleva, and A. I. Solov’ev, Dep. publ. OIYaI B1-18-88-857, OIYaI (Dubna, 1988) [in Russian].

  28. S. Wu, Polymer Interface and Adhesion (M. Dekker, New York, 1982).

    Google Scholar 

  29. T. M. Kolosova and E. S. Belyaev, in Nauchnyi vestnik NGTU, Novgorod, 2015, p. 11.

    Google Scholar 

  30. L. G. Molokanova, A. N. Nechaev, and P. Yu. Apel, Colloid J. 76, 17 (2014).

    Article  Google Scholar 

  31. I. V. Vorob’eva, B. V. Zaitsev, and A. F. Kobets, Vest. KhNU 962, 49 (2011).

    Google Scholar 

  32. C. Goncalves, J. O. A. Coutinho, and I. M. Marrucho, Optical Properties. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications (John Wiley & Sons, Inc., 2010).

    Google Scholar 

  33. Y. S. Kim, C. M. Snively, Y. Liu, J. F. Rabolt, and D. B. Chase, Langmuir 24, 10791 (2008).

    Article  CAS  Google Scholar 

  34. M. Schneider, N. Fritzsche, A. Puciul-Malinowska, A. Baliś, A. Mostafa, I. Bald, and A. Taubert, Polymers 12, 1711 (2020).

    Article  CAS  Google Scholar 

  35. Z. A. A. Hamid, C. Y. Tham, and Z. Ahmad, J. Mater. Sci. 53, 4745 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Development Program of Tomsk Polytechnic University. The authors (E.O. Filippova, N.M. Ivanova) express their deep gratitude to Professor V.F. Pichugin for invaluable advice and assistance in carrying out this research. The authors are grateful to M.O. Koptsev for help in etching the samples. Special thanks to O.M. Ivanov for assistance in the irradiation of samples at the IC-100 accelerator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ivanova.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, N.M., Filippova, E.O., Tverdokhlebov, S.I. et al. Preparation, Structure, and Properties of Track-Etched Membranes Based on Polylactic Acid. Membr. Membr. Technol. 3, 282–290 (2021). https://doi.org/10.1134/S2517751621050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751621050073

Keywords:

Navigation