Skip to main content
Log in

AEDG Peptide Regulation of the Expression of Human Circadian Rhythm Genes upon Accelerated Aging of the Pineal Gland

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Night work desynchronizes biorhythms, disturbs melatonin production, and accelerates pineal-gland aging. A promising geroprotector for the restoration of pineal melatonin synthesis is AEDG (Ala-Glu-Asp-Gly) peptide. AEDG peptide increases 6-sulfatoxymelatonin (6-SOMT) excretion in the urine of middle-aged people by 1.7 times. Moreover, AEDG peptide normalizes the hyperexpression of the Clock and Csnk1e circadian genes in leukocytes and increases Cry2 gene hypoexpression in peripheral blood lymphocytes by two times in people with reduced epiphyseal melatonin-production. The geroprotective effect of AEDG peptide is based on its ability to restore epiphyseal melatonin production via regulation of the expression of human circadian genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gorokhova, S.G., Genetics of circadian rhythms, Zheleznodorozhn. Med. Prof. Bioritmol., 2011, no. 17, pp. 54–66.

  2. Kayumov, A.R. and Gimadutdinov, O.A., Praktikum po molekulyarnoi genetike: Uchebno-metodicheskoe posobie (Practical Manual on Molecular Genetics), Kazan: Kazan. Fed. Univ., 2016.

  3. Kvetnoi, I.M., Polyakova, V.O., Konovalov, S.S., et al., Regulatory peptides and their role in neuroimmunoendocrine intercellular interactions in normal state and in pathology, Neiroimmunoendokrinologiya, 2009, vol. 7, no. 1, pp. 48–49.

    Google Scholar 

  4. Korkushko, O.V., Khavinson, V.Kh., and Shatilo, V.B., Pineal’naya zheleza: puti korrektsii pri starenii (Pineal Gland: Correction in Aging), St. Petersburg: Nauka, 2006.

  5. Lin’kova, N.S., Molecular mechanisms of peptidergic regulation of the functions of the pineal gland and thymus, Vestn. Ross. Univ. Druzhby Narodov, Ser. Med., 2012, no. 7, pp. 142–143.

  6. Rapoport, S.I., Melatonin: persspektivy primeneniya v klinike (Melatonin: Prospective Use in Clinical Practice), Moscow: IMA Press, 2012.

  7. Solovyov, I.A., Dobrovol’skaya, E.V., and Moskalev, A.A., Genetic control of circadian rhythms and aging, Russ. J. Genet., 2016, vol. 52, no. 4, pp. 343–361.

    Article  CAS  Google Scholar 

  8. Trofimova, S.V., Gorbunov, A.V., and Pronyaeva, V.E., The role of melatonin in the development of retinal pathology in patients of the older age group, Usp. Gerontol., 2012, vol. 25, no. 2, pp. 239–243.

    CAS  Google Scholar 

  9. Trofimova, S.V., Linkova, N.S., Klimenko, A.A., et al., Pineamin increases melatonin synthesis in pineal gland of elderly people, Adv. Gerontol., 2017, vol. 7, no. 3, pp. 319–322.

    Article  Google Scholar 

  10. Khavinson, V.Kh., RF Patent 2161501, 2001.

  11. Khavinson, V.Kh., Kopylov, A.T., Vaskovsky, B.V., et al., Identification of peptide AEDG in the polypeptide complex of the pineal gland, Bull. Exp. Biol. Med., 2017, vol. 164, no. 3, pp. 41–43.

    Article  CAS  Google Scholar 

  12. Khavinson, V.Kh., Linkova, N.S., Kvetnoy, I.M., et al., Molecular cellular mechanisms of peptide regulation of melatonin synthesis in pinealocyte culture, Bull. Exp. Biol. Med., 2012, vol. 153, no. 2, pp. 255–258.

    Article  CAS  Google Scholar 

  13. Khavinson, V.Kh. and Morozov, V.G., Peptidy pineal’noi zhelezy i timusa v regulyatsii stareniya (Role of Pineal and Thymus Peptides in the Regulation of Aging), St. Petersburg: Foliant, 2001.

  14. Tsfasman, A.Z., Melatonin: normativy pri razlichnykh sutochnykh rezhimakh. Professional’nye aspekty v patologii (Melatonin: Norms at Different Diurnal Regimes. Professional Aspects in Pathology), Moscow: Mosk. Gos. Univ. Putei Soobshch., 2015.

  15. Anisimov, V.N. and Khavinson, V.Kh., Peptide bioregulation of aging: results and prospects, Biogerontology, 2010, vol. 11, no. 2, pp. 139–149.

    Article  CAS  Google Scholar 

  16. Buhr, E.D. and Takahashi, J.S., Molecular components of the Mammalian circadian clock, Handb. Exp. Pharmacol., 2013, no. 217, pp. 3–27.

  17. Carpena, M.X., Hutz, M.H., Salatino-Oliveira, A., et al., CLOCK polymorphisms in attention-deficit/hyperactivity disorder (ADHD): further evidence linking sleep and circadian disturbances and ADHD, Genes (Basel), 2019, vol. 10, no. 2, p. E88. https://doi.org/10.3390/genes10020088

    Article  CAS  PubMed  Google Scholar 

  18. Cuesta, M., Cermakian, N., and Boivin, D.B., Glucocorticoids entrain molecular clock components in human peripheral cells, FASEB J., 2015, vol. 29, no. 4, pp. 1360–1370.

    Article  CAS  Google Scholar 

  19. Falcon, J., Besseau, L., Fuentes, M., et al., Structural and functional evolution of the pineal melatonin system in vertebrates, Ann. N.Y. Acad. Sci., 2009, vol. 63, p. 101.

    Article  Google Scholar 

  20. Korman, M., Palm, D., Uzoni, A., et al., ADHD 24/7: Circadian clock genes, chronotherapy and sleep/wake cycle insufficiencies in ADHD, World J. Biol. Psychiatry, 2018, vol. 21, no. 3, pp. 1–16. https://doi.org/10.1080/15622975.2018.1523565

    Article  Google Scholar 

  21. Laing, E.E., Möller-Levet, C.S., Poh, N., et al., Blood transcriptome based biomarkers for human circadian phase, eLife, 2017, vol. 6, p. e20 214.

    Article  Google Scholar 

  22. Partch, C.L., Green, C.B., and Takahashi, J.S., Molecular architecture of the mammalian circadian clock, Trends Cell Biol., 2014, vol. 24, no. 2, pp. 90–99.

    Article  CAS  Google Scholar 

  23. Wittenbrink, N., Bharath, A., Münch, M., et al., High-accuracy determination of internal circadian time from a single blood sample, J. Clin. Invest., 2018, vol. 128, no. 9, pp. 3826–3839.

    Article  Google Scholar 

  24. Yamanaka, Y., Yamada, Y., Honma, K.I., and Honma, S., Cryptochrome deficiency enhances transcription but reduces protein levels of pineal Aanat, J. Mol. Endocrinol., 2018, vol. 61, no. 4, pp. 219–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Ivko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivko, O.M., Linkova, N.S., Ilina, A.R. et al. AEDG Peptide Regulation of the Expression of Human Circadian Rhythm Genes upon Accelerated Aging of the Pineal Gland. Adv Gerontol 11, 53–58 (2021). https://doi.org/10.1134/S2079057021010380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057021010380

Keywords:

Navigation