Skip to main content
Log in

“Journey to the West”: Three Phylogenetic Lineages Contributed to the Invasion of Stone Moroko, Pseudorasbora parva (Actinopterygii: Cyprinidae)

  • Published:
Russian Journal of Biological Invasions Aims and scope Submit manuscript

Abstract

The stone moroko (or topmouth gudgeon), Pseudorasbora parva, is one of the most successful invasive species in the fresh waters of Europe and some regions of Asia. We analyzed the diversity of the mitochondrial COI gene in the genus Pseudorasbora and, in particular, in populations of P. parva from its native range (the Far East) and areas of recent dispersal. Four phylogenetic lineages of stone moroko were identified within its native range, and three of them contributed to the dispersal within more western regions of Eurasia. One of these lineages was initially distributed in the north of China and the Far East of Russia, the second one was in southern China, the third one was in the Korean Peninsula and, probably, in the adjacent regions of China. Geographical distribution of COI lineages suggests three donor regions of stone moroko invasions into more western regions of Eurasia: the basin of the Yangtze River, the northern (Russian) part of the Amur River basin, and the Sungari River basin (right tributary of the Amur in the territory of China).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Antonov, A.L., Effect of restructuring of the hydraulic network on the formation of the ranges of some fish species in the Amur basin and adjacent territories, Izv. Russ. Geogr. O-va, 2012, vol. 144, no. 6, pp. 30–37.

    Google Scholar 

  2. Armstrong, K.F. and Ball, S.L., DNA barcodes for biosecurity: invasive species identification, Philos. Trans. R. Soc. London: Ser. B, Biol. Sci., 2005, vol. 360, no. 1462, pp. 1813–1823.

    Article  CAS  Google Scholar 

  3. Baltazar-Soares, M., Blanchet, S., Cote, J., Tarkan, A.S., Zahorska, E., Gozlan, R.E., and Eizaguirre, C., Genomic footprints of a biological invasion: introduction from Asia and dispersal in Europe of the topmouth gudgeon (Pseudorasbora parva), Mol. Ecol., 2020, vol. 29, no. 1, pp. 71–85.

    Article  PubMed  Google Scholar 

  4. Banarescu, P.M., Zur ausbreitungsgeschichte von Pseudorasbora parva in Sudosteuropa (Pisces, Cyprinidae), Rev. Roum. Biol. Anim., 1990, vol. 35, no. 1, pp. 13–16.

    Google Scholar 

  5. Bekker, E.I., Karabanov, D.P., Galimov, Y.R., Haag, C.R., Neretina, T.V., and Kotov, A.A., Phylogeography of Daphnia magna Straus (Crustacea: Cladocera) in Northern Eurasia: Evidence for a deep longitudinal split between mitochondrial lineages, PLoS One, 2018, vol. 13, no. 3.

  6. Bizyaev, I.N. and Motenkov, Yu.M., Results of the introduction of grass carp and silver carp into open water bodies of the Azov-Kuban region, Tr. VNIRO, 1964, vol. 55, pp. 125–132.

    Google Scholar 

  7. Bolotov, I.N., Vikhrev, I.V., Bespalaya, Y.V., Gofarov, M.Y., Kondakov, A.V., Konopleva, E.S., Bolotov, N.N., and Lyubas, A.A., Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida), Mol. Phylogenet. Evol., 2016, vol. 103, no. 1, pp. 104–121.

    Article  PubMed  Google Scholar 

  8. Borisova, A.T., Accidental invaders in water bodies of Uzbekistan, Vopr. Ikhtiol., 1972, vol. 12, no. 1, pp. 49–53.

    Google Scholar 

  9. Borovikova, E.A. and Artamonova, V.S., Morphological specificities of vendace (Salmoniformes: Salmonidae: Coregoninae: Coregonus albula) population in Lake Pleshcheyevo (the Volga River basin): relationships of two phylogenetic lineages in a new zone of secondary contact, Org. Diversity Evol., 2018, vol. 18, no. 3, pp. 355–366.

    Article  Google Scholar 

  10. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchene, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kuhnert, D., Maio, N., Matschiner, M., Mendes, F.K., Muller, N.F., Ogilvie, H.A., DuPlessis, L., et al., BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis, PLoS Comput. Biol., 2019, vol. 15, no. 4.

  11. Collins, R.A. and Cruickshank, R.H., The seven deadly sins of DNA barcoding, Mol. Ecol. Resour., 2013, vol. 13, no. 6, pp. 969–975.

    CAS  PubMed  Google Scholar 

  12. Dlugosch, K.M. and Parker, I.M., Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions, Mol. Ecol., 2008, vol. 17, no. 1, pp. 431–449.

    Article  CAS  PubMed  Google Scholar 

  13. Eytan, R.I. and Hellberg, M.E., Nuclear and mitochondrial sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes, Evolution, 2010, vol. 64, no. 12, pp. 3380–3397.

    Article  CAS  PubMed  Google Scholar 

  14. FishBase. World Wide Web Electronic Publication, Froese, R. and Pauly, D., Eds., 2020. https://www.fishbase.org. Accessed May 12, 2020.

  15. Fu, Y.X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, no. 2, pp. 915–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Funk, D.J. and Omland, K.E., Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA, Annu. Rev. Ecol. Evol. Syst., 2003, vol. 34, pp. 397–423.

    Article  Google Scholar 

  17. GenBank. https://www.ncbi.nlm.nih.gov/nuccore. Accessed September 27, 2020.

  18. Hanfling, B., Understanding the establishment success of non-indigenous fishes: lessons from population genetics, J. Fish Biol., 2007, vol. 71, suppl. D, pp. 115–135.

  19. Hardouin, E.A., Andreou, D., Zhao, Y., Chevret, P., Fletcher, D.H., Britton, J.R., and Gozlan, R.E., Reconciling the biogeography of an invader through recent and historic genetic patterns: the case of topmouth gudgeon Pseudorasbora parva, Biol. Invasions, 2018, vol. 20, no. 8, pp. 2157–2171.

    Article  Google Scholar 

  20. Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R., Biological identification through DNA barcodes, Proc. R. Soc. London B, 2003, vol. 270, pp. 313–321.

    Article  CAS  Google Scholar 

  21. Hebert, P.D.N., Remigio, E.A., Colbourne, J.K., Taylor, D.J., and Wilson, C.C., Accelerated molecular evolution in halophilic Crustaceans, Evolution, 2002, vol. 56, no. 5, pp. 909–926.

    CAS  PubMed  Google Scholar 

  22. Hebert, P.D.N., Waard, J.R., and Landry, J.-F., DNA barcodes for 1/1000 of the animal kingdom, Biol. Lett., 2010, vol. 6, no. 3, pp. 359–362.

    Article  CAS  PubMed  Google Scholar 

  23. Hikita, T., On the recent distribution of two small cyprinid fishes, Pseudorasbora parva pumila (Miyadi) and P. parva parva (Temmink and Schlegel) in Hokkaido Island, Sci. Rep. Hokkaido Salmon Hatchery, 1964, no. 18, pp. 113–116.

  24. Ho, S.Y.W., Tong, K.J., Foster, C.S.P., Ritchie, A.M., Lo, N., and Crisp, M.D., Biogeographic calibrations for the molecular clock, Biol. Lett., 2015, vol. 11, no. 9.

  25. Jang, J.E., Kim, J.H., Kang, J.H., Baek, Y., Wang, J.-H., Lee, H.-G., Choi, J.-K., Choi, J.-S., and Lee, H.J., Genetic diversity and genetic structure of the endangered Manchurian trout, Brachymystax lenok tsinlingensis, at its southern range margin: conservation implications for future restoration, Conserv. Genet., 2017, vol. 18, no. 5, pp. 1023–1036.

    Google Scholar 

  26. Jordan, D.S. and Metz, C.W., A catalog of the fishes known from the waters of Korea, Mem. Carnegie Mus., 1913, vol. 6, no. 1, pp. 1–65.

    Article  Google Scholar 

  27. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Haeseler, A., and Jermiin, L.S., ModelFinder: fast model selection for accurate phylogenetic estimates, Nat. Methods, 2017, vol. 14, no. 6, pp. 587–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karabanov, D.P. and Kodukhova, Yu.V., Stone moroco Pseudorasbora parva (Cyprinidae): new species in the ichthyofauna of Vietnam, J. Ichthyol., 2013, vol. 53, no. 3, pp. 235–239.

    Article  Google Scholar 

  29. Karabanov, D.P., Kodukhova, Yu.V., and Kutsokon’, Yu.K., Expansion of the stone moroko Pseudorasbora parva (Cypriniformes, Cyprinidae) into water bodies of Eurasia, Vestn. Zool., 2010, vol. 44, no. 2, pp. 115–124.

    Google Scholar 

  30. Karabanov, D.P., Kodukhova, Yu.V., and Mustafayev, N.J., Topmouth gudgeon Pseudorasbora parva (Cyprinidae)— a new species in the ichthyofauna of Azerbaijan, Russ. J. Biol. Invasions, 2013, vol. 4, no. 2, pp. 133–138.

    Article  Google Scholar 

  31. Karabanov, D.P., Kodukhova, Yu.V., and Slyn’ko, Yu.V., New finds of topmouth gudgeon Pseudorasbora parva (Temm. et Schl., 1846) in the European part of Russia, Russ. J. Biol. Invasions, 2010, vol. 1, no. 3, pp. 156–158.

    Article  Google Scholar 

  32. Karabanov, D.P., Kodukhova, Yu.V., Artaev, O.N., and Levin, B.A., The topmouth gudgeon Pseudorasbora parva (Temminck et Schlegel, 1846) (Actinopterygii: Cyprinidae): a new species in the ichthyofauna of the Republic of Abkhazia, Inland Water Biol., 2016, vol. 9, no. 1, pp. 104–106.

    Article  Google Scholar 

  33. Karpevich, A.F., Acclimatization of aquatic organisms and scientific foundations of aquaculture, in Izbrannye trudy (Selected Works), Moscow: Pamyatniki Istor. Mysli, 1998, vol. 2.

  34. Katoh, K., Rozewicki, J., and Yamada, K.D., MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Briefings Bioinf., 2019, vol. 20, no. 4, pp. 1160–1166.

    Article  CAS  Google Scholar 

  35. Keskin, E., Agdamar, S., and Tarkan, A.S., DNA barcoding common non-native freshwater fish species in Turkey: low genetic diversity but high population structuring, Mitochondrial DNA, 2013, vol. 24, no. 3, pp. 276–287.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, I.-S. and Park, J.-Y., Freshwater Fishes of Korea, Seoul: Kyo-Hak Publ. Co., 2002.

    Google Scholar 

  37. Koga, K. and Goto, A., Genetic structures of allopatric and sympatric populations in Pseudorasbora pumila pumila and Pseudorasbora parva, Ichthyol. Res., 2005, vol. 52, no. 3, pp. 243–250.

    Article  Google Scholar 

  38. Kondakov, A.V., Bespalaya, Yu.V., Vikhrev, I.V., Konopleva, E.S., Gofarov, M.Yu., Tomilova, A.A., Vinarski, M.V., and Bolotov, I.N., The Asian pond mussels rapidly colonize Russia: successful invasions of two cryptic species to the Volga and Ob rivers, BioInvasions Rec., 2020a, vol. 9, vol. 9, no. 3, pp. 504–518.

  39. Kondakov, A.V., Konopleva, E.S., Vikhrev, I.V., Bespalaya, Yu.V., Gofarov, M.Yu., Kabakov, M.B., Tomilova, A.A., Vinarski, M.V., and Bolotov, I.N., Phylogeographic affinities, distribution and population status of the non-native Asian pond mussels Sinanodonta lauta and S. woodiana in Kazakhstan, Ecol. Montenegrina, 2020b, vol. 27, pp. 22–34.

    Article  Google Scholar 

  40. Konishi, M., Hosoya, K., and Takata, K., Natural hybridization between endangered and introduced species of Pseudorasbora, with their genetic relationships and characteristics inferred from allozyme analyses, J. Fish Biol., 2003, vol. 63, no. 1, pp. 213–231.

    Article  CAS  Google Scholar 

  41. Kulakova, A.M., Experience of transportation of the grass carp and silver carp for acclimatization, Mater. vsesoyuzn. soveshch. po rybokhoz. osvoeniyu rastitel’noyadnykh ryb– Belogo amura (Ctenopharyngodon idella) i tolstolobika (Hypophthalmichthys molitrix) v vodoemy SSSR (Proc. All-Union Congress on Fish Farming of Herbivorous Fish, Grass Carp (Ctenopharyngodon idella) and Silver Carp (Hypophthalmichthys molitrix) in the Water Bodies of the USSR), Ashkhabad, 1963, pp. 70–75.

  42. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kvach, Y. and Kutsokon, Y., The non-indigenous fishes in the fauna of Ukraine: a potentia ad actum, BioInvasions Rec., 2017, vol. 6, no. 3, pp. 269–279.

    Article  Google Scholar 

  44. Lee, C.E., Evolutionary genetics of the invasive species, Trends Ecol. Evol., 2002, vol. 17, no. 8, pp. 386–391.

    Article  Google Scholar 

  45. Leigh, J.W., Bryant, D., and Nakagawa, S., popART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110–1116.

    Article  Google Scholar 

  46. Lessios, H.A., The Great American Schism: divergence of marine organisms after the rise of the Central American Isthmus, Annu. Rev. Ecol. Evol. Syst., 2008, vol. 39, no. 1, pp. 63–91.

    Article  Google Scholar 

  47. Li, C., Lin, H.-D., and Zhao, J., The complete mitochondrial genome of Pseudorasbora interrupta and phylogeny of Pseudorasbora, Mitochondrial DNA, Part B, 2019, vol. 4, no. 2, pp. 3293–3294.

    Article  Google Scholar 

  48. Lin, J. and Dai, L., Quaternary marine transgressions in Eastern China, J. Palaeogeogr., 2012, vol. 1, no. 2, pp. 105–125.

    Google Scholar 

  49. Madden, M.J.L., Young, R.G., Brown, J.W., Miller, S.E., Frewin, A.J., and Hanner, R.H., Using DNA barcoding to improve invasive pest identification at U.S. ports-of-entry, PLoS One, 2019, vol. 14, no. 9.

  50. Makhrov, A.A., Artamonova, V.S., and Karabanov, D.P., Finding of topmouth gudgeon Pseudorasbora parva (Temminck et Schlegel) (Actinopterygii: Cyprinidae) in the Brahmaputra River basin (Tibetan Plateau, China), Russ. J. Biol. Invasions, 2013, vol. 4, no. 3, pp. 174–179.

    Article  Google Scholar 

  51. Maruyama, S., Isozaki, Y., Kimura, G., and Terabayashi, M., Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present, Island Arc, 1997, vol. 6, no. 1, pp. 121–142.

    Article  Google Scholar 

  52. Matsuzawa, Y. and Senou, H., Alien Fishes of Japan, Tokyo: Bun-ichi Co. Ltd., 2008.

    Google Scholar 

  53. Nakazawa, Y. and Bae, C.J., Quaternary paleoenvironmental variation and its impact on initial human dispersals into the Japanese Archipelago, Palaeogeogr, Palaeoclim., Palaeoecol., 2018, vol. 512, no. 1, pp. 145–155.

    Article  Google Scholar 

  54. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.

    Google Scholar 

  55. Nichols, J.T., The Fresh-Water Fishes of China, New York: Am. Mus. Nat. History, 1943.

    Google Scholar 

  56. Okonechnikov, K., Golosova, O., and Fursov, M., Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, no. 8, pp. 1166–1167.

    Article  CAS  PubMed  Google Scholar 

  57. Orlova, M.I., Biological invasion: a crucible for evolution?, Ekol. Genet., 2011, vol. 9, no. 3, pp. 33–46.

    Article  Google Scholar 

  58. Oshima, M., Contributions to the study of the fresh water fishes of the Island of Formosa, Ann. Carnegie Mus., 1919, vol. 12, nos. 2–4, pp. 169–328.

    Article  Google Scholar 

  59. Pseudorasbora parva. https://osf.io/xhcq7/. Accessed September 27, 2020.

  60. Reshetnikov, A.N., Spatio-temporal dynamics of the expansion of rotan Perccottus glenii from West-Ukrainian centre of distribution and consequences for European freshwater ecosystems, Aquat. Invasions, 2013, vol. 8, no. 2, pp. 193–206.

    Article  Google Scholar 

  61. Roman, J. and Darling, J.A., Paradox lost: genetic diversity and the success of aquatic invasions, Trends Ecol. Evol., 2007, vol. 22, no. 9, pp. 454–464.

    Article  PubMed  Google Scholar 

  62. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., and Sanchez-Gracia, A., DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol. Biol. Evol., 2017, vol. 34, no. 12, pp. 3299–3302.

    Article  CAS  PubMed  Google Scholar 

  63. Samye opasnye invazionnye vidy Rossii (Top-100) (The Most Dangerous Invasive Species in Russia (Top-100)), Dgebuadze, Yu.Yu., Petrosyan, V.G., and Khlyap, L.A., Eds., Moscow: Tov. Nauchn. Izd. KMK, 2018.

    Google Scholar 

  64. Sax, D.F., Stachowicz, J.J., Brown, J.H., Bruno, J.F., Dawson, M.N., Gaines, S.D., Grosberg, R.K., Hastings, A., Holt, R.D., Mayfield, M.M., O’Connor, M.I., and Rice, W.R., Ecological and evolutionary insights from species invasions, Trends Ecol. Evol., 2007, vol. 22, no. 9, pp. 465–471.

    Article  PubMed  Google Scholar 

  65. Serov, N.P., Acclimatization of fish in the basin of Lake Balkhash, Izv. GosNIORKh, 1975, vol. 103, pp. 172–174.

    Google Scholar 

  66. Simon, A., Britton, R., Gozlan, R., Oosterhout, C., Volckaert, F.A.M., and Hanfling, B., Invasive cyprinid fish in Europe originate from the single introduction of an admixed source population followed by a complex pattern of spread, PLoS One, 2011, vol. 6, no. 6.

  67. Simon, A., Gozlan, R.E., Britton, R.J., Oosterhout, C., and Hanfling, B., Human induced stepping-stone colonisation of an admixed founder population: the spread of topmouth gudgeon (Pseudorasbora parva) in Europe, Aquat. Sci., 2015, vol. 77, no. 1, pp. 17–25.

    Article  Google Scholar 

  68. Snyder, M.R. and Stepien, C.A., Genetic patterns across an invasion’s history: a test of change versus stasis for the Eurasian round goby in North America, Mol. Ecol., 2017, vol. 26, no. 4, pp. 1075–1090.

    Article  CAS  PubMed  Google Scholar 

  69. Stolyarova, A.V., Bazykin, G.A., Neretina, T.V., and Kondrashov, A.S., Bursts of amino acid replacements in protein evolution, R. Soc. Open Sci., 2019, vol. 6.

  70. Sukhoverkhov, F.M., Experience of transportation and cultivation of grass carps and silver carps, Rybn. Khoz., 1960, no. 12, pp. 15–22.

  71. Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, no. 3, pp. 585–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Templeton, A.R., Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation, Mol. Ecol., 2009a, vol. 18, no. 2, pp. 319–331.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Templeton, A.R., Why does a method that fails continue to be used? The answer, Evolution, 2009b, vol. 63, no. 4, pp. 807–812.

    Article  PubMed  PubMed Central  Google Scholar 

  74. The Genetics of Colonizing Species, Baker, H.G. and Stebbins, G.L., Eds., New York–London: Acad. Press, 1965.

    Google Scholar 

  75. Verigin, B.V., The results of work on the acclimatization of Far Eastern herbivorous fish and measures for their further development and study in new areas, Vopr. Ikhtiol., 1961, vol. 1, no. 4, pp. 640–649.

    Google Scholar 

  76. Ward, R.D. and Holmes, B.H., An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I (cox1) in fishes, Mol. Ecol. Notes, 2007, vol. 7, pp. 899–907.

    Article  CAS  Google Scholar 

  77. Ward, R.D., Hanner, R., and Hebert, P.D.N., The campaign to DNA barcode all fishes, FISH-BOL, J. Fish Biol., 2009, vol. 74, no. 2, pp. 329–356.

    Article  CAS  PubMed  Google Scholar 

  78. Watterson, G.A., On the number of segregating sites in genetical models without recombination, Theor. Popul. Biol., 1975, vol. 7, no. 2, pp. 256–276.

    Article  CAS  PubMed  Google Scholar 

  79. Wildekamp, R.H., Van Neer, W., Kucuk, F., and Unlusayi, M., First record of the eastern Asiatic gobionid fish Pseudorasbora parva from the Asiatic part of Turkey, J. Fish Biol., 1997, vol. 51, no. 4, pp. 858–861.

    Google Scholar 

  80. Williford, D., Deyoung, R.W., Honeycutt, R.L., Brennan, L.A., and Hernandez, F., Phylogeography of the bobwhite (Colinus) quails, Wildlife Monogr., 2016, vol. 193, no. 1, pp. 1–49.

    Article  Google Scholar 

  81. Xiao, Z., Lan, Z.-H., and Chen, X.-L., A new species of the genus Pseudorasbora from Guangdong Province, China (Cypriniformes, Cyprinidae), Acta Zootaxon. Sin., 2007, vol. 32, no. 4, pp. 977–980.

    Google Scholar 

  82. Xu, S., Hebert, P.D.N., Kotov, A.A., and Cristescu, M.E., The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Linnaeus, 1761) (Crustacea, Onychopoda), Mol. Ecol., 2009, vol. 18, no. 24, pp. 5161–5179.

    Article  CAS  PubMed  Google Scholar 

  83. Yang, J., He, S., Freyhof, J., Witte, K., and Liu, H., The phylogenetic relationships of the Gobioninae (Teleostei: Cyprinidae) inferred from mitochondrial cytochrome b gene sequences, Hydrobiologia, 2006, vol. 553, no. 1, pp. 255–266.

    Article  CAS  Google Scholar 

  84. Young, C.C. and Tchang, T.L., Fossil fishes from the Shanwang series of Shantung, Bull. Geol. Soc. China, 1936, vol. 15, no. 2, pp. 197–205.

    Article  Google Scholar 

  85. Zhao, J., Xu, D., Zhao, K., Diogo, R., Yang, J., and Peng, Z., The origin and divergence of Gobioninae fishes (Teleostei: Cyprinidae) based on complete mitochondrial genome sequences, J. Appl. Ichthyol., 2016, vol. 32, no. 1, pp. 32–39.

    Article  Google Scholar 

  86. Zhu, W., Zhong, K., Fu, X., Chen, C., Zhang, M., and Gao, S., The formation and evolution of the East China Sea Shelf Basin: a new view, Earth-Sci. Rev., 2019, vol. 190, no. 1, pp. 89–111.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to V.S. Artamonova, E.I. Barabanshchikov, Yu.Yu. Dgebuadze, Yu.K. Kutsokon, N.J. Mustafaev, T.L. Opaleva (Kulevskaya), B.I. Sheftel and Fang Yun for their help and assistance in collecting the material, I.N. Bolotov for discussing the work and pointing out important literature sources, Y.A. Titova for linguistic corrections as well as to the editor and reviewers for valuable comments that significantly improved the text of the manuscript.

Funding

D.P. Karabanov developed the concept of the article, collected and processed the material; his work was funded by Russian Foundation for Basic Research, grant no. 20-34-70020. Y.V. Kodukhova performed processing material in the framework of the state task of the Institute for Biology of Inland Waters of the Russian Academy of Sciences, theme AAAA-A18-118012690102-9. A.N. Pashkov collected material in the South of Russia and worked with the literature; his work was performed at the expense of own funds of the author. A.N. Reshetnikov participated in the material collection in the Don River basin, discussion of the results, editing and translating the manuscript and was supported by grant Russian Science Foundation no. 16-14-10323. A.A. Makhrov participated in the material collection in China, data analysis (with the support of Russian Foundation for Basic Research, grant no. 20-54-53003 GFEN_a) and the preparation of the manuscript (within the framework of the state task of the Institute of Ecology and Evolution of the Russian Academy of Sciences, topic 6: Ecology and Biodiversity of Aquatic Communities 0109-2018-0076 AAAA-A18-118042490059-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. P. Karabanov, Yu. V. Kodukhova, A. N. Pashkov, A. N. Reshetnikov or A. A. Makhrov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabanov, D.P., Kodukhova, Y.V., Pashkov, A.N. et al. “Journey to the West”: Three Phylogenetic Lineages Contributed to the Invasion of Stone Moroko, Pseudorasbora parva (Actinopterygii: Cyprinidae). Russ J Biol Invasions 12, 67–78 (2021). https://doi.org/10.1134/S2075111721010070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075111721010070

Keywords:

Navigation