Skip to main content
Log in

The Role of Interfacial Effects in Hydrothermal Aging of Aramid Composites

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The results of comparative studies of hydrothermal aging of epoxy organic plastics based on the Rusar and Armos high-strength and -modulus aramid fibers are presented. Kinetic laws of moisture transport into the composites were established, the corresponding parameters were determined, and the kinetics of changes in the shear strength of organic plastics under forced exposure to heat and moisture was determined. It was shown that the diffusion of water vapors into the composite materials can be described with a good approximation by Fick’s law. Moreover, we obtained a closer approximation to Fick’s law for Rusar organic plastic (with the deviations being smaller) compared to the Armos organic plastic. A kinetic model of a decrease in the interlayer shear strength of the composites upon exposure to heat and moisture is suggested. Differences in the parameters of water sorption kinetics and the interlayer shear strength of organic plastics are attributed to the different surface polarity and morphology of initial fibers and, respectively, to the differences in the arrangement of interfacial layers in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Mashinostroenie. Entsiklopediya (Machinery Manufacture. Encyclopedia), vol. II-4: Nemetallicheskie konstruktsionnye materialy (Non-Metallic Structure Materials), Moscow: Mashinostroenie, 2005, p. 189.

  2. Kablov, E.N., Vse Mater. Entsikl. Sprav., 2007, no. 1, p. 2.

  3. Zhelezina, G.F. and Matveeva, N.N., Vse Mater. Entsikl. Sprav., 2007, no. 1, p. 11.

  4. Dalinkevich, A.A., Mikheev, P.V., Gusev, S.A., et al., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 7, p. 1326.

    Article  CAS  Google Scholar 

  5. Dalinkevich, A.A., Gumargalieva, K.Z., Marakhovskii, S.S., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 7, p. 1176.

    Article  CAS  Google Scholar 

  6. Dalinkevich, A.A., Gumargalieva, K.Z., Sukhanov, A.V., et al., Trudy 4-oi Moskovskoi mezhdunarodnoi konferentsii “Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov” (TPKMM) (Proc. 4th Moscow Int. Conference “Theory and Practice of Technology for Manufacturing Products Made of Composite Materials and New Metal Alloys”), Moscow, April 26–29, 2005, p. 111.

  7. Dalinkevich, A.A., Gumargalieva, K.Z., Sukhanov, A.V., et al., Trudy 5-oi Moskovskoi mezhdunarodnoi konferentsii “Teoriya i praktika tekhnologii proizvodstva izdelii iz kompozitsionnykh materialov i novykh metallicheskikh splavov” (TPKMM) (Proc. 5th Moscow Int. Conference “Theory and Practice of Technology for Manufacturing Products Made of Composite Materials and New Metal Alloys”), Moscow, April 24–27, 2007, p. 111.

  8. Poimanov, A.M., Bel’nik, A.R., and Nosov, E.F., in Diffuzionnye yavleniya v polimerakh (Diffusional Phenomena in Polymers), Moscow: All-Union D. I. Mendeleev Chemical Society, 1974, p. 37.

  9. Perlin, S.M. and Makarov, V.G., Khimicheskoe soprotivlenie stekloplastikov (Chemical Resistance of Fiber-Glass Plastics), Moscow: Khimiya, 1983, p. 184.

  10. Gurtovnik, I.G., Sokolov, V.I., Trofimov, N.N., et al., Radioprozrachnye izdeliya iz stekloplastikov (Radiotransparent Devices Made of Fiber-Glass Plastics), Moscow: Mir, 2003, p. 168.

  11. Trofimov, N.N., Kanovich, M.Z., Kartashov, E.M., et al., Fizika kompozitsionnykh materialov (Physics of Composite Materials), Moscow: Mir, 2005, vol. 2, p. 315.

    Google Scholar 

  12. Moiseev, Yu.V. and Zaikov, G.E., Khimicheskaya stoikost’ polimerov v agresivnykh sredakh (Chemical Resistance of Polymers in Aggressive Media), Moscow: Khimiya, 1979, p. 108.

  13. Zaikov, G.E., Iordanskii, A.L., and Markin, V.S., Diffuziya elektrolitov v polimerakh (Diffusion of Electrolytes in Polymers), Moscow: Khimiya, 1984, pp. 43–82.

  14. Tsilipotkina, M.V., in Sovremennye fizicheskie metody issledovaniya polimerov (Modern Physical Methods for Investigating Polymers), Moscow: Khimiya, 1982, p. 198.

  15. Pakhomov, K.S., Antipov, Yu.V., Chalykh, A.E., et al., Vestn. Kazan. Tekhnol. Univ., 2016, vol. 19, no. 1, p. 5.

    Google Scholar 

  16. Kuperman, A.M., Gorenberg, A.Ya., Ivanova-Mumzhieva, V.G., et al., Vopr. Oboronnoi Tekh., Ser. 15, 2012, no. 4 (167), p. 24.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dalinkevich.

Additional information

Translated by E. Khozina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalinkevich, A.A., Nenasheva, T.A. & Kalinina, I.G. The Role of Interfacial Effects in Hydrothermal Aging of Aramid Composites. Prot Met Phys Chem Surf 57, 352–360 (2021). https://doi.org/10.1134/S2070205121020040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121020040

Keywords:

Navigation