Skip to main content
Log in

Comprehensive Comparison of High-Performance Fischer-Tropsch Synthesis Cobalt Catalysts Containing Different Types of Heat-Conducting Frames

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A comparative analysis of industrial zeolite-containing cobalt catalysts for Fischer-Tropsch synthesis with a number of physicochemical parameters is performed. Catalysts containing a heat-conducting additive (aluminum flakes or exfoliated graphite) were tested in an industrial size single-tube reactor (length—6000 mm, inner diameter—12 mm). The testing results of a sample without heat-conducting additive are presented for comparison. It is shown that a catalyst based on support, containing exfoliated graphite is preferable for industrial application at high gas hour space velocities of the syngas due to its higher thermal stability and liquid hydrocarbon productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

REFERENCES

  1. Studies in Surface Science and Catalysis, vol. 152: Fischer–Tropsch Technology, Steynberg, A.P. and Dry, M.E., Eds., Amsterdam: Elsevier, 2004. https://doi.org/10.1016/s0167-2991(04)x8456-1

  2. Greener Fischer–Tropsch Processes: For Fuels and Feedstocks, Maitlis, P.M. and Klerk, A., Eds., Weinheim: Wiley-VCH, 2013. https://doi.org/10.1002/9783527656837

  3. Mordkovich, V.Z., Sineva, L.V., Kul’chakovskaya, E.V., and Asalieva, E.Yu., Katal. Prom-sti, 2015, no. 5, pp. 23–45. https://doi.org/10.18412/1816-0387-2015-5-23-45

  4. Chemierohstoffe aus kohle, von Falbe J., Ed., Stuttgart: Thieme, 1977

  5. Ermolaev, V.S., Gryaznov, K.O., Mitberg, E.B., Mordkovich, V.Z., and Tretyakov, V.F., Chem. Eng. Sci., 2015, vol. 138, pp. 1–8. https://doi.org/10.1016/j.ces.2015.07.036

    Article  CAS  Google Scholar 

  6. Derevich, I.V., Ermolaev, V.S., and Mordkovich, V.Z., Abstract of Papers, Proc. 14th International Heat Transfer Conference (IHTC14), Washington, DC, 2010, pp. 1–10. https://doi.org/10.1115/IHTC14-22469

  7. Merino, D., Sanz, O., and Montes, M., Fuel, 2017, vol. 210, pp. 49–57. https://doi.org/10.1016/j.fuel.2017.08.040

    Article  CAS  Google Scholar 

  8. Visconti, C.G., Tronconi, E., Groppi, G., Lietti, L., Iovane, M., Rossini, S., and Zennaro, R., Chem. Eng. J., 2011, vol. 171, no. 3, pp. 1294–1307. https://doi.org/10.1016/j.cej.2011.05.014

    Article  CAS  Google Scholar 

  9. Khassin, A.A., Sipatrov, A.G., Yurieva, T.M., Chermashentseva, G.K., Rudina, N.A., and Parmon, V.N., Catal. Today, 2005, vol. 105, nos. 3–4, pp. 362–366. https://doi.org/10.1016/j.cattod.2005.06.031

  10. Fratalocchi, L., Visconti, C.G., Groppi, G., Lietti, L., and Tronconi, E., Chem. Eng. J., 2018, vol. 349, pp. 829–837. https://doi.org/10.1016/j.cej.2018.05.108

    Article  CAS  Google Scholar 

  11. Park, J.C., Roh, N.S., Chun, D.H., Jung, H., and Yang, J., Fuel Process. Technol., 2014, vol. 119, pp. 60–66. https://doi.org/10.1016/j.fuproc.2013.10.008

    Article  CAS  Google Scholar 

  12. Fu, T. and Li, Z., Chem. Eng. Sci., 2015, vol. 135, pp. 3–20. https://doi.org/10.1016/j.ces.2015.03.007

    Article  CAS  Google Scholar 

  13. Asalieva, E., Gryaznov, K., Kulchakovskaya, E., Ermolaev, I., Sineva, L., and Mordkovich, V., Appl. Catal., A, 2015, vol. 505, pp. 260–266. https://doi.org/10.1016/j.apcata.2015.08.006

  14. Sineva, L.V. and Mordkovich, V.Z., Nauchn. Zh. Ross. Gas. O-va, 2019, no. 1, pp. 42–57.

  15. Asalieva, E., Sineva, L., Sinichkina, S., Solomonik, I., Gryaznov, K., Pushina, E., Kulchakovskaya, E., Gorshkov, A., Kulnitskiy, B., Ovsyannikov, D., Zholudev, S., and Mordkovich, V., Appl. Catal., A, 2020, vol. 601, article no. 117639. https://doi.org/10.1016/j.apcata.2020.117639

  16. Lapidus, A.L. and Krylova, A.Yu., Russ. Chem. Rev., 1998, vol. 67, no. 11, pp. 941–950. https://doi.org/10.1070/RC1998v067n11ABEH000416

    Article  Google Scholar 

  17. Li, Y., Wang, T., Wu, C., Li, H., Qin, X., and Tsubaki, N., Fuel Process. Technol., 2010, vol. 91, no. 4, pp. 388–393. https://doi.org/10.1016/j.fuproc.2009.07.002

    Article  CAS  Google Scholar 

  18. Sineva, L.V. and Mordkovich, V.Z., Nauchn. Zh. Ross. Gas. O-va, 2019, no. 2, pp. 56–68.

  19. RF Patent 2405625 C1, 2010.

  20. RF Patent 2685437 S2, 2019.

  21. GOST (State Standard) 17219-71: Active Carbons. Method for Determination of Summary Pore Volume by the Moisture Capacity Test, 1973.

  22. Sineva, L.V., Fischer–Tropsch synthesis catalysts containing cobalt, zeolite, and a heat-conducting additive, Doctoral (Chem.) Dissertation, Moscow: TISNCM, 2021.

  23. Sineva, L.V., Mordkovich, V.Z., Ermolaev, V.S., Ermolaev, I.S., Mitberg, E.B., and Solomonik, I.G., Katal Prom-sti, 2012, no. 6, pp. 13–22.

  24. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Disperse and Porous Materials), Novosibirsk: Nauka, 1999.

  25. Khasin, A.A., Catalysts based on layered structures for the processes of natural gas conversion into synthetic liquid fuels, Doctoral (Chem.) Dissertation, Novosibirsk: BIC SB RAS, 2005.

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.G. Solomonik for TPR studies; S.G. Sinichkina for catalysts sorption studies, E.A. Pushina for catalysts thermal analysis, I.A. Perezhogin for the transmission electron microscopy research, S.I. Zholudev for in X-ray diffraction measurements and results processing, D.A. Ovsyannikov for catalysts thermal diffusivity measurements, the staff of Kant Baltic Federal University’s laboratory of X-ray optics and physical materials science, and A.A. Snegirev and A.S. Narikovich for their help in research and results discussion.

Funding

The present work was carried out on FSBI TISNCM Shared-Use Equipment Center “Research of Nanostructured, Carbon and Superhard Materials” equipment.

The article was prepared in full within the state assignment of Ministry of Education and Science of the Russian Federation for 2023.

The authors are grateful to ООО INFRA for its support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. O. Gryaznov, L. V. Sineva, E. Yu. Asalieva or V. Z. Mordkovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gryaznov, K.O., Sineva, L.V., Asalieva, E.Y. et al. Comprehensive Comparison of High-Performance Fischer-Tropsch Synthesis Cobalt Catalysts Containing Different Types of Heat-Conducting Frames. Catal. Ind. 15, 21–35 (2023). https://doi.org/10.1134/S2070050423010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423010051

Keywords

Navigation