Skip to main content
Log in

Numerical Simulation of the Evolution of an Intense Aerodynamic Jet in the Far-Field of Propagation

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The conditions for the outflow of an underexpanded supersonic jet from an experiment conducted at the Laboratory for Turbulent Research in Aerospace and Combustion (LTRAC), Monash University, Australia are considered. The characteristic parameters of linear and nonlinear transport for the LTRAC jet are analyzed using LES solutions from the near and far acoustic fields. In both cases, the fulfillment of the conditions of the linear scenario of sound transfer over distances characteristic of the LTRAC acoustic experiment is shown. To verify the theoretical estimates, numerical solutions of the spherical Burgers equation are also obtained using the initial data from the LES calculation. Solutions are obtained without and in the presence of a term in the Burgers equation corresponding to quadratic nonlinearity. The solutions respond to sound transfer at distances that are orders of magnitude greater than the distance between the acoustic microphone and the jet in the LTRAC experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. C. L. Morfey and G. P. Howell, “Nonlinear propagation of aircraft noise in the atmosphere,” AIAA J. 19 (8), 986–992 (1981). https://doi.org/10.2514/3.51026

    Article  Google Scholar 

  2. S. N. Gurbatov and O. V. Rudenko, “Statistical phenomena,” in Nonlinear Acoustics, Ed. by M. F. Hamilton and D. T. Blackstock (Academic, San Diego, CA, 1998), Ch. 13, pp. 377–398.

    Google Scholar 

  3. W. Baars, C. Tinney, M. Wochner, and M. Hamilton, “On cumulative nonlinear acoustic waveform distortions from high-speed jets,” J. Fluid Mech. 749, 331–366 (2014). https://doi.org/10.1017/jfm.2014.228

    Article  Google Scholar 

  4. M. F. Hamilton, “Effective Gol’dberg numbers for diverging waves,” J. Acoust. Soc. Am. 140 (6), 4419–4426 (2016). https://doi.org/10.1121/1.4968787

    Article  Google Scholar 

  5. K. L. Gee, V. W. Sparrow, M. M. James, J. M. Downing, C.M. Hobbs, T.B. Gabrielson, and A.A. Atchley, “The role of nonlinear effects in the propagation of noise from high-power jet aircraft,” J. Acoust. Soc. Am. 123 (6), 4082–4093 (2008). https://doi.org/10.1121/1.2903871

    Article  Google Scholar 

  6. P. Pineau and C. Bogey, “Numerical investigation of wave steepening and shock coalescence near a cold Mach 3 jet,” J. Acoust. Soc. Am. 149 (1), 357–370 (2021). https://doi.org/10.1121/10.0003343

    Article  Google Scholar 

  7. D. Edgington-Mitchell, K. Oberleithner, D. R. Honnery, and J. Soria, “Coherent structure and sound production in the helical mode of a screeching axisymmetric jet,” J. Fluid Mech. 748, 822–847 (2014). https://doi.org/10.1017/jfm.2014.173

    Article  Google Scholar 

  8. J. E. Ffowcs Williams, and D. L. Hawkings, “Sound generation by turbulence and surfaces in arbitrary motion,” Philos. Trans. R. Soc. A Math., Phys. Eng. Sci. 264 (1151), 321–342 (1969). https://doi.org/10.1098/rsta.1969.0031

    Article  MATH  Google Scholar 

  9. M. L. Shur, P. R. Spalart, and M. Kh. Strelets, “Noise prediction for increasingly complex jets. Part I: Methods and tests,” Int. J. Aeroacoust. 4 (3), 213–245 (2005). “Noise prediction for increasingly complex jets. Part II: Applications,” Int. J. Aeroacoust. 4 (3), 247–266 (2005).https://doi.org/10.1260/147547205477138510.1260/1475472054771385https://doi.org/10.1260/1475472054771376

  10. S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics (Fizmatlit, Moscow, 2008; Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-23617-4

  11. S. N. Gurbatov, I. Yu. Demin, Val. V. Cherepennikov, and B. O. Enflo, “Behavior of intense acoustic noise at large distances,” Acoust. Phys. 53 (1), 48–63 (2007). https://doi.org/10.1134/S106377100701006X

    Article  Google Scholar 

  12. S. N. Gurbatov, O. V. Rudenko, and A. V. Tyurina, “Singularities and spectral asymptotics of a random nonlinear wave in a nondispersive system,” Wave Motion 95, 102519 (2020). https://doi.org/10.1016/j.wavemoti.2020.102519

    Article  MathSciNet  MATH  Google Scholar 

  13. V. A. Semiletov and S. A. Karabasov, “CABARET scheme with conservation-flux asynchronous time-stepping for nonlinear aeroacoustics problems,” J. Comput. Phys. 253, 157–165 (2013). https://doi.org/10.1016/j.jcp.2013.07.008

    Article  MathSciNet  MATH  Google Scholar 

  14. A. P. Markesteijn and S. A. Karabasov, “CABARET solutions on graphics processing units for NASA jets: Grid sensitivity and unsteady inflow condition effect,” C. R. Méc. 346 (10), 948–963 (2018). https://doi.org/10.1016/j.crme.2018.07.004

    Article  Google Scholar 

  15. A. P. Markesteijn and S. A. Karabasov, “Simulations of co-axial jet flows on graphics processing units: The flow and noise analysis,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377 (2159), 20190083 (2019). https://doi.org/10.1098/rsta.2019.0083

    Article  MATH  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 19-12-00256.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Gurbatov, I. Yu. Demin, A. A. Lisin, S. A. Karabasov or A. V. Tyurina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurbatov, S.N., Demin, I.Y., Lisin, A.A. et al. Numerical Simulation of the Evolution of an Intense Aerodynamic Jet in the Far-Field of Propagation. Math Models Comput Simul 15, 109–117 (2023). https://doi.org/10.1134/S207004822301009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004822301009X

Keywords:

Navigation