Skip to main content
Log in

Approaches to the Numerical Simulation of the Acoustic Field Generated by a Multi-Element Aircraft Wing in High-Lift Configuration

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

We assess the applicability of the IDDES method for modeling acoustics generated by a multielement aircraft wing with deflected high-lift devices. The testing is carried out using the flow around an unswept wing segment based on the 30P30N airfoil. The near-field acoustics and aerodynamics obtained by the computations are compared with the experimental data. Far-field acoustics is modeled by the FWH method, and the resulting spectra and radiation pattern are presented in the paper. We also test the application of sponge layers on the segment borders as an alternative to the periodic boundary conditions; the corresponding effects on the numerical solution are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5. 
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

REFERENCES

  1. Reduction of Noise at Source. Environmental Protection. ICAO. https://www.icao.int/environmental-protection/pages/reduction-of-noise-at-source.aspx. Cited February 17, 2022.

  2. W. Dobrzynski, R. Ewert, M. Pott-Pollenske, M. Herr, and J. Delfs, “Research at DLR towards airframe noise prediction and reduction,” Aerosp. Sci. Technol. 12 (1), 80–90 (2008). https://doi.org/10.1016/J.AST.2007.10.014

    Article  Google Scholar 

  3. R. Merino-Martínez, P. Sijtsma et al., “A review of acoustic imaging methods using phased microphone arrays,” CEAS Aeronaut. J. 10 (1), 197–230 (2019). https://doi.org/10.1007/S13272-019-00383-4

    Article  Google Scholar 

  4. AIAA CFD Workshops. https://cfd2030.com/workshops. html. Cited February 17, 2022.

  5. M. Choudhari, C. Bahr, M. Khorrami, D. Lockard et al., “Simulations and measurements of airframe noise: A BANC Workshops perspective,” in NATO STO-MP-AVT-246 SpecialistsMeeting on Progress and Challenges in Validation Testing for Computational Fluid Dynamics, p. MP-AVT-246-16 (2016).

  6. M. M. Choudhari and D. P. Lockard, “Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop,” in 21st AIAA/CEAS Aeroacoustics Conference, Dallas, TX, 2015, p. AIAA 2015-2844. https://doi.org/10.2514/6.2015-2844

  7. J.A. Housman, G.-D. Stich, J. G. Kocheemoolayil, and C.C. Kiris, “Predictions of slat noise from the 30P30N at high angles of attack using zonal hybrid RANS-LES,” in 25th AIAA/CEAS Aeroacoustics Conference, Delft, Netherlands, 2019, p. AIAA 2019-2438. https://doi.org/10.2514/6.2019-2438

  8. M. Herr, R. Ewert et al., “Broadband trailing-edge noise predictions—Overview of BANC-III results,” in 21st AIAA/CEAS Aeroacoustics Conference, Dallas, TX, 2015, p. AIAA 2015-2847. https://doi.org/10.2514/6.2015-2847

  9. J. Delfs, L. Bertsch, C. Zellmann, L. Rossian, E.K. Far, T. Ring, S.C. Langer, “Aircraft noise assessment— From single components to large scenarios,” Energies 11 (2), 429, 1–25 (2018). https://doi.org/10.3390/EN11020429

  10. S. Heinz, “A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications,” Prog. Aerosp. Sci. 114, 100597 (2020). https://doi.org/10.1016/J.PAEROSCI.2019.100597

    Article  Google Scholar 

  11. W. Haase, M. Braza, and A. Revell, DESider—A European Effort on Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 103 (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-540-92773-0

  12. P. R. Spalart, “Detached-eddy simulation,” Annu. Rev. Fluid Mech. 41, 181–202 (2009). https://doi.org/10.1146/ANNUREV.FLUID.010908.165130

    Article  MATH  Google Scholar 

  13. C. Mockett, M. Fuchs, and F. Thiele, “Progress in DES for wall-modelled LES of complex internal flows,” Comput. Fluids 65, 44–55 (2012). https://doi.org/10.1016/J.COMPFLUID.2012.03.014

    Article  MathSciNet  MATH  Google Scholar 

  14. M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities,” Int. J. Heat Fluid Flow 29 (6), 1638–1649 (2008). https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2008.07.001

    Article  Google Scholar 

  15. M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows,” Flow Turbul. Combust. 95 (4), 709–737 (2015). https://doi.org/10.1007/S10494-015-9618-0

    Article  Google Scholar 

  16. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, and T. K. Kozubskaya, “ Parallel research code NOISEtte for large-scale CFD and CAA simulations,” Vychisl. Metody Program. 13 (3), 110–125 (2012).

    Google Scholar 

  17. A. Gorobets, “Parallel algorithm of the NOISEtte code for CFD and CAA simulations,” Lobachevskii J. Math. 39 (4), 524–532 (2018). https://doi.org/10.1134/S1995080218040078

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Gorobets and P. Bakhvalov, “Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers,” Comput. Phys. Commun. 271, 108231 (2022). https://doi.org/10.1016/J.CPC.2021.108231

    Article  MathSciNet  Google Scholar 

  19. K. Paschal, L. Jenkins, and C. Yao, “Unsteady slat wake characteristics of a 2-D high-lift configuration,” in 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2000, p. AIAA 2000-0139. https://doi.org/10.2514/6.2000-139

  20. L. N. Jenkins, M. R. Khorrami, and M. Choudhari, “Characterization of unsteady flow structures near leading-edge slat: Part I. PIV measurements,” in 10th AIAA/CEAS Aeroacoustics Conference, Manchester, United Kingdom, 2004, p. AIAA 2004-2801. https://doi.org/10.2514/6.2004-2801

  21. K. A. Pascioni, L. N. Cattafesta, and M. M. Choudhari, “An experimental investigation of the 30P30N multi-element high-lift airfoil,” in 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, 2014, p. AIAA 2014-3062. https://doi.org/10.2514/6.2014-3062

  22. K. A. Pascioni and L. N. Cattafesta, “Aeroacoustic measurements of leading-edge slat noise,” in 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, 2016, p. AIAA 2016-2960. https://doi.org/10.2514/6.2016-2960

  23. K. A. Pascioni and L. N. Cattafesta, “An aeroacoustic study of a leading-edge slat: Beamforming and far field estimation using near field quantities,” J. Sound Vib. 429, 224–244 (2018). https://doi.org/10.1016/J.JSV.2018.05.029

    Article  Google Scholar 

  24. K. A. Pascioni and L. N. Cattafesta, “Unsteady characteristics of a slat-cove flow field,” Phys. Rev. Fluids 3 (3), 034607 (2018). https://doi.org/10.1103/PHYSREVFLUIDS.3.034607

    Article  Google Scholar 

  25. M. Murayama, K. Nakakita, K. Yamamoto, H. Ura, Y. Ito, and M. M. Choudhari, “Experimental study of slat noise from 30P30N three-element high-lift airfoil in JAXA hard-wall low-speed wind tunnel,” in 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, 2014, p. AIAA 2014-2080. https://doi.org/10.2514/6.2014-2080

  26. M. Murayama et al., “Experimental study of slat noise from 30P30N three-element high-lift airfoil in JAXA kevlar-wall low-speed wind tunnel,” in 2018 AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, 2018, p. AIAA 2018-3460. https://doi.org/10.2514/6.2018-3460

  27. D. J. Bodony, “Analysis of sponge zones for computational fluid mechanics,” J. Comput. Phys. 212 (2), 681–702 (2006). https://doi.org/10.1016/J.JCP.2005.07.014

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Mani, “Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment,” J. Comput. Phys. 231 (2), 704–716 (2012). https://doi.org/10.1016/J.JCP.2011.10.017

    Article  MATH  Google Scholar 

  29. A. Colombo and A. Crivellini, “Assessment of a sponge layer non-reflecting boundary treatment for high-order CAA/CFD computations,” Comput. Fluids 140, 478–499 (2016). https://doi.org/10.1016/J.COMPFLUID.2016.09.019

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Ashcroft and X. Zhang, “A computational investigation of the noise radiated by flow-induced cavity oscillations,” in 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2001, p. AIAA 2001-0512. https://doi.org/10.2514/6.2001-512

  31. P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” in 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, 1992, p. AIAA 92–0439. https://doi.org/10.2514/6.1992-439

  32. C. Mockett, M. Fuchs, A. Garbaruk, M. Shur, P. Spalart, M. Strelets, F. Thiele, and A. Travin, “Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES,” in Progress in Hybrid RANS-LES Modelling, Ed. by S. Girimaji, W Haase et al., Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 130 (Springer, Cham, 2015), pp. 187–201. https://doi.org/10.1007/978-3-319-15141-0_15

  33. F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, “Using singular values to build a subgrid-scale model for large eddy simulations,” Phys. Fluids 23 (8), 085106 (2011).https://doi.org/10.1063/1.3623274

    Article  Google Scholar 

  34. I. Abalakin, P. Bakhvalov, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Int. J. Numer. Methods Fluids 81 (6), 331–356 (2016). https://doi.org/10.1002/fld.4187

    Article  MathSciNet  Google Scholar 

  35. P. Bakhvalov and T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes,” Comput. Fluids 157, 312–324 (2017). https://doi.org/10.1016/j.compfluid.2017.09.004

    Article  MathSciNet  MATH  Google Scholar 

  36. A. P. Duben, T. K. Kozubskaya, P. V. Rodionov, and V. O. Tsvetkova, “EBR schemes with Curvilinear reconstructions of variables in the near-wall Region,” Comput. Math. Math. Phys. 61 (1), 1–16 (2021). https://doi.org/10.1134/S0965542520120039

    Article  MathSciNet  MATH  Google Scholar 

  37. P. A. Bakhvalov, “Method of local element splittings for diffusion terms discretization in edge-bases schemes,” KIAM Preprint No. 79 (Keldysh Inst. Appl. Math. Russ. Acad. Sci., Moscow, 2006) [in Russian]. https://doi.org/10.20948/PREPR-2020-79-E

  38. Y. Zhang, H. Chen, K. Wang, and M. Wang, “Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation,” AIAA J. 55 (12), 4219–4233 (2017). https://doi.org/10.2514/1.J055853

    Article  Google Scholar 

  39. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 4th ed. (Wiley, New York, 2010).

    Book  MATH  Google Scholar 

  40. G. Heinzel, A. Rüdiger, and R. Schilling, “Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows” (2002). http://hdl.handle.net/11858/00-001M-0000-0013-557A-5.

  41. J. E. Ffowcs Williams, and D. L. Hawkings, “Sound generation by turbulence and surfaces in arbitrary motion,” Philos. Trans. R. Soc. London. Ser. A: Math., Phys. Eng. Sci. 264 (1151), 321–342 (1969). https://doi.org/10.1098/rsta.1969.0031

    Article  MATH  Google Scholar 

  42. P. A. Bakhvalov, T. K. Kozubskaya, E. D. Kornilina, A. V. Morozov, and M. V. Yacobovskii, “Technology of predicting acoustic turbulence in the far-field flow,” Math. Models Comput. Simul. 4 (3), 363–374 (2012). https://doi.org/10.1134/S2070048212030039

    Article  MathSciNet  Google Scholar 

  43. M. L. Shur, P. R. Spalart, and M. K. Strelets, “Noise prediction for increasingly complex jets. Part I: Methods and tests,” Int. J. Aeroacoust. 4 (3), 213–245 (2005). https://doi.org/10.1260/1475472054771376

    Article  Google Scholar 

  44. M. L. Shur, P. R. Spalart, and M. K. Strelets, “Noise prediction for increasingly complex jets. Part II: Applications,” Int. J. Aeroacoust. 4 (3), 247–266 (2005). https://doi.org/10.1260/1475472054771385

    Article  Google Scholar 

  45. P. R. Spalart and M. L. Shur, “Variants of the Ffowcs Williams–Hawkings equation and their coupling with simulations of hot jets,” Int. J. Aeroacoust. 8 (5), 477–491 (2009). https://doi.org/10.1260/147547209788549280

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project 19-51-80001 BRICS_t). The computations were performed on the hybrid supercomputer K60 installed in the Suреrсоmрutеr Сеntrе of Collective Usage of KIAM RAS with the additional use of the Shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Rodionov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorobets, A.V., Duben, A.P., Kozubskaya, T.K. et al. Approaches to the Numerical Simulation of the Acoustic Field Generated by a Multi-Element Aircraft Wing in High-Lift Configuration. Math Models Comput Simul 15, 92–108 (2023). https://doi.org/10.1134/S2070048223010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223010088

Keywords:

Navigation