Skip to main content
Log in

Global Occurrence of Cyanobacteria: Causes and Effects (Review)

  • PHYTOPLANKTON, PHYTOBENTHOS, PHYTOPERIPHYTON
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

This review is devoted to analyzing the global occurrence of cyanobacteria in water ecosystems, the possible causes of this phenomenon, and its consequences. In recent decades, cyanobacteria have been rapidly expanding in waterbodies all over the world. This expansion is accompanied by water pollution with dangerous cyanotoxin metabolites that represents a significant threat to humans, animals, and the environment. Purifying water of cyanobacteria is a serious problem, because it is necessary to eliminate toxins and the unpleasant taste and odor of drinking water, as well as fight the biocorrosion caused by cyanobacterial fouling. Cyanobacterial blooms concern not only issues related to the water supply, but also to fishing, the recreational use of waterbodies, and tourism. Global warming and climate change, the increasing eutrophication of natural waters, and anthropogenic pollution, as well as the unique physiological characteristics of cyanobacteria and their ability to adapt to a variety of environmental conditions, including extreme environments, are among the main factors contributing to the expansion of cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abdullin, Sh.R. and Bagmet, V.B., Mixotrophy of cyanobacteria and algae in caves, Zh. Obshch. Biol., 2016, vol. 77, no. 1, p. 54.

    Google Scholar 

  2. Belykh, O.I., Gladkikh, A.S., Sorokovikova, E.G., et al., Saxitoxin-producing cyanobacteria in Lake Baikal, Contemp. Probl. Ecol., 2015, vol. 8, p. 186.

    Article  Google Scholar 

  3. Belykh, O.I., Tikhonova, I.V., Kuz’min, A.V., et al., Toxin-producing cyanobacteria in Lake Baikal and water bodies of the Baikal region, Teor. Prikl. Ekol., 2020, no. 1, p. 21.

  4. Briand, J.F., Leboulanger, C., Humbert, J.F., et al., Cylindropsermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance or global warming?, J. Phycol., 2004, vol. 40, no. 2, p. 231.

    Article  Google Scholar 

  5. Briland, R.D., Stone, J.P., Manubolu, M., et al., Cyanobacterial blooms modify food web structure and interactions in western Lake Erie, Harmful Algae, 2020, vol. 92, p. 101586. https://doi.org/10.1016/j.hal.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  6. Bulgakov, N.G. and Levich, A.P., Biogenic elements in the environment and phytoplankton: the ratio of nitrogen to phosphorus as an independent regulatory factor, Usp. Sovrem. Biol., 1995, vol. 15, no. 1, p. 13.

    Google Scholar 

  7. Burford, M.A., Beardall, J., Willis, A., et al., Understanding the winning strategies used by the bloom forming Cyanobacterium cylindrospermopsis Raciborskii, Harmful Algae, 2016, vol. 54, p. 44.

    Article  PubMed  Google Scholar 

  8. Burford, M.A., Hamilton, D.P., and Wood, S.A., Emerging HAB research issues in freshwater environments, in Global Ecology and Oceanography of Harmful Algal Blooms, Ecol. Stud. 232, Cham: Springer, 2018, p. 381.

  9. Burford, M.A., Carey, C.C., Hamilton, D.P., et al., Perspective: advancing the research agenda for improving understanding of cyanobacteria in a future of global change, Harmful Algae, 2020, vol. 91, p. 101601. https://doi.org/10.1016/j.hal.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Butakova, E.A., Specific features of odor-causing compounds (geosmin and 2-methylisoborneol) as secondary metabolites of cyanobacteria, Russ. J. Plant Physiol., 2013, vol. 60, no. 4, p. 507.

    Article  CAS  Google Scholar 

  11. Carey, C.C., Ibelings, B.W., Hoffman, E.P., et al., Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate, Water Res., 2012, vol. 46, p. 1394.

    Article  CAS  PubMed  Google Scholar 

  12. Carmichael, W.W., The cyanotoxins, Adv. Bot. Res., 1997, vol. 27, p. 211.

    Article  CAS  Google Scholar 

  13. Carmichael, W.W., Health effects of toxin producing cyanobacteria: the cyanoHABs, Hum. Ecol. Risk Assess., 2001, vol. 7, p. 1393.

    Article  Google Scholar 

  14. Carreto, J.I. and Carignan, M.O., Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects, Mar. Drugs, 2011, vol. 9, p. 387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chernova, E.N., Russkikh, Ya.V., and Zhakovskaya, Z.A., Toxic metabolites of blue-green algae and methods for their determination, Vestn. St. Peterb. Gos. Univ., Ser. Fiz. Khim., 2017, vol. 4 (62), p. 440.

    Google Scholar 

  16. Christiansen, G., Molitor, C., Philmus, B., and Kurmayer, R., Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element, Mol. Biol. Evol., 2008, vol. 25, p. 1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Codd, G.A., Morrison, L.F., and Metcalf, J.S., Cyanobacterial toxins: risk management for health protection, Toxicol. Appl. Pharmacol., 2005, vol. 203, p. 264.

    Article  CAS  PubMed  Google Scholar 

  18. Conley, D.J., Paerl, H.W., Howarth, R.W., et al., Ecology. Controlling eutrophication: nitrogen and phosphorus, Science, 2009, vol. 323, p. 1014.

    Article  CAS  PubMed  Google Scholar 

  19. Dai, R., Liu, H., Qu, J., Zhao, X., and Hou, Y., Effects of amino acids on microcystin production of the Microcystis aeruginosa, J. Hazard. Mater., 2009, vol. 30, nos. 2–3, p. 730.

    Article  CAS  Google Scholar 

  20. Dasey, M., Ryan, N., Wilson, J., et al., Investigations into the taxonomy, toxicity and ecology of benthic cyanobacterial accumulations in Myall Lake, Australia, Mar. Freshwater Res., 2005, vol. 56, p. 45.

    Article  CAS  Google Scholar 

  21. Dittmann, E., Fewer, D.P., and Neilan, B.A., Cyanobacterial toxins: biosynthetic routes and evolutionary roots, FEMS Microbiol. Rev., 2013, vol. 37, p. 23.

    Article  CAS  PubMed  Google Scholar 

  22. Dodds, W.K., Bouska, W.W., Eitzmann, J.I., et al., Eutrophication of U.S. freshwaters: analysis of potential economic damages, Environ. Sci. Technol., 2009, vol. 43, p. 12.

    Article  CAS  PubMed  Google Scholar 

  23. Van Drecht, G., Bouwman, A.F., Harrison, J., and Knoop, J.M., Global nitrogen and 1651 phosphate in urban wastewater for the period 1970 to 2050, Global Biogeochem. Cycles, 2009, vol. 23, no. 4, p. 1.

    Article  CAS  Google Scholar 

  24. Drobac, D., Tokido, N., Simeunovic, J., et al., Human exposure to cyanotoxins and their effects on health, Arch. Industr. Hyg. Toxicol., 2013, vol. 64, p. 305.

    Article  CAS  Google Scholar 

  25. Dziallas, C. and Grossart, H.-P., Increasing oxygen and water temperature select for toxic Microcystis sp., PLoS One, 2011, vol. 6, no. 9, p. 1.

    Article  CAS  Google Scholar 

  26. Falconer, I.R., Prevention, mitigation and remediation of cyanobacterial blooms in reservoirs, in Cyanobacterial Toxins of Drinking Water Supplies, London: CRC Press, 2005, p. 215.

    Google Scholar 

  27. Glibert, P.M. and Burford, M.A., Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges, Oceanography, 2017, vol. 30, p. 58.

    Article  Google Scholar 

  28. Hallock, P., Global change and modern coral reefs: new opportunities to understand shallow-water carbonate depositional processes, Sedim. Geol., 2005, vol. 175, p. 19.

    Article  CAS  Google Scholar 

  29. Halstvedt, C.B., Rohrlack, T., Andersen, T., et al., Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors, J. Plankton Res., 2007, vol. 29, no. 5, p. 471.

    Article  CAS  Google Scholar 

  30. Harke, M.J., Steffen, M.M., Gobler, C.J., et al., A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp., Harmful Algae, 2016, vol. 54, p. 4.

    Article  PubMed  Google Scholar 

  31. He, Y.-Y. and Häder, D.-P., Involvement of reactive oxygen species in the UV-B damage to the Cyanobacterium anabaena sp., J. Photochem. Photobiol., Ser. B: Biol., 2002, vol. 66, p. 73.

    CAS  Google Scholar 

  32. Heath, M.W., Wood, S.A., and Ryan, K.G., Spatial and temporal variability in phormidium mats and associated anatoxin-a and homoanatoxin-a in two New Zealand rivers, Aquat. Microb. Ecol., 2011, vol. 64, p. 69.

    Article  Google Scholar 

  33. Hodgkins, G.A., The importance of record length in estimating the magnitude of climatic changes: an example using 175 years of lake ice-out dates in New England, Climate Change, 2013, vol. 119, p. 705.

    Article  Google Scholar 

  34. Ibelings, B.W. and Chorus, I., Accumulation of cyanobacterial toxins in freshwater-seafood and its consequences for public health: a review, Env. Pollut., 2007, vol. 150, p. 177.

    Article  CAS  Google Scholar 

  35. Izaguirre, G., Jungblut, A.D., and Neilan, B.A., Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California, Water Res., 2007, vol. 41, p. 492.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, Y., Ji, B., Wong, R.N.S., and Wong, M.H., Statistical study of the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium Microcystis aeruginosa, Harmful Algae, 2008, vol. 7, p. 127.

    Article  CAS  Google Scholar 

  37. Jochimsen, E.M., Carmichael, W.W., An, J.S., et al., Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil, N. Engl. J. Med., 1998, vol. 338, p. 873.

    Article  CAS  PubMed  Google Scholar 

  38. Jüttner, F. and Watson, S.B., Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters, Appl. Environ. Microbiol., 2007, vol. 73, pp. 4395–4406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kahru, M., Elmgren, R., Kaisermc, J., et al., Cyanobacterial blooms in the Baltic Sea: correlations with environmental factors, Harmful Algae, 2020, vol. 92, p. 101739. https://doi.org/10.1016/j.hal.2019.101739

    Article  CAS  PubMed  Google Scholar 

  40. Kamal, A.A. and Ahmad, I.Z., Cyanobacteria the “blue green algae” and its novel applications: a brief review, Int. J. Innov. Appl. Stud., 2014, vol. 7, p. 251.

    Google Scholar 

  41. Kaplan, A., Harel, M., Kaplan-Levy, R.N., et al., The languages spoken in the water body (or the biological role of cyanobacterial toxins), Front. Microbiol., vol. 3, p. 1.

  42. Kosten, S., Huszar, V.L.M., Becares, E., et al., Warmer climates boost cyanobacterial dominance in shallow lakes, Glob. Change Biol., 2012, vol. 18, p. 118.

    Article  Google Scholar 

  43. Kotak, B.G., Lam, A.K.-Y., Prepas, E.E., et al., Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes, J. Phycol., 1995, vol. 31, p. 248.

    Article  CAS  Google Scholar 

  44. Kurmayer, R., Deng, L., and Entfellner, E., Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria, Harmful Algae, 2016, vol. 54, p. 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, J., Rai, P.K., Jeon, Y.J., et al., The role of algae and cyanobacteria in the production and release of odorants in water, Environ. Pollut., 2017, vol. 227, p. 252.

    Article  CAS  PubMed  Google Scholar 

  46. Lehtimäki, J., Moisander, P., Sivonen, K., and Kononen, K., Growth, nitrogen fxation, and nodularin production by two Baltic Sea cyanobacteria, Appl. Environ. Microbiol., 1997, vol. 63, no. 5, p. 1647.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li, Z., Hobson, P., An, W., et al., Earthy odor compounds production and loss in three cyanobacterial cultures, Water Res., 2012, vol. 46, p. 5165.

    Article  CAS  PubMed  Google Scholar 

  48. Li, X., Dreher, T.W., and Li, R., An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species, Harmful Algae, 2016, vol. 54, p. 54.

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Y., Wang, F., Chen, X., et al., Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels, Ecotoxicol. Environ. Saf., 2015, vol. 111, p. 138.

    Article  CAS  PubMed  Google Scholar 

  50. Lopes, V.R. and Vasconcelos, V.M., Planktonic and benthic cyanobacteria of European brackish waters: a perspective on estuaries and brackish seas, Eur. J. Phycol., 2011, vol. 46, no. 3, p. 292.

    Article  CAS  Google Scholar 

  51. Makhalanyane, T.P., Valverde, A., Velazquez, D., et al., Ecology and biogeochemistry of cyanobacteria in soils permafrost, aquatic and cryptic polar habitats, Biodivers. Conserv., 2015, vol. 24, p. 819.

    Article  Google Scholar 

  52. Merel, S., Walker, D., Chicana, R., et al., State of knowledge and concerns on cyanobacterial blooms and cyanotoxins, Environ. Int., 2013, vol. 59, p. 303.

    Article  CAS  PubMed  Google Scholar 

  53. Moisander, P.H., Ochiai, M., and Lincoff, A., Nutrient limitation of Microcystis aeruginosa in northern California Klamath River reservoirs, Harmful Algae, 2009, vol. 8, p. 889.

    Article  CAS  Google Scholar 

  54. Molot, L.A., Watson, S.B., Creed, I.F., et al., A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron, Freshwater Biol., 2014, vol. 59, p. 1323.

  55. De Morais, P., Stoichev, T., Basto, M.C.P., et al., Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris, Water Res., 2014, vol. 52, p. 63.

  56. Namikoshi, M. and Rinehart, K.L., Bioactive compounds produced by cyanobacteria, J. Industr. Microbiol. Biotechn., 1996, vol. 17, p. 373.

    Article  CAS  Google Scholar 

  57. O’Neil, J.M., Davis, T.W., Burford, M.A., and Gobler, C.J., The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change, Harmful Algae, 2012, vol. 14, p. 313.

    Article  CAS  Google Scholar 

  58. Novotny, V., Diffuse pollution from agriculture—a worldwide outlook, Water Sci. Technol., 1999, vol. 39, p. 1.

    Article  CAS  Google Scholar 

  59. Oh, H.M., Lee, S.J., Jang, M.H., and Yoon, B.D., Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat, Appl. Environ. Microbiol., 2000, vol. 66, no. 1, p. 176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Omidi, A., Esterhuizen-Londt, M., and Pflugmacher, S., Still challenging: the ecological function of the cyanobacterial toxin microcystin—what we know so far, Toxin Rev., 2018, vol. 37, p. 87.

    Article  CAS  Google Scholar 

  61. Paerl, H.W., Controlling cyanobacterial harmful blooms in freshwater ecosystems, Microb. Biotechnol., 2017, vol. 10, p. 1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paerl, H.W. and Fulton, R.S., Ecology of harmful cyanobacteria, in Ecology of Harmful Algae, Berlin: Springer, 2006, p. 95.

    Google Scholar 

  63. Paerl, H.W. and Paul, V.J., Climate change: links to global expansion of harmful cyanobacteria, Water Res., 2012, vol. 46, p. 1349.

    Article  CAS  PubMed  Google Scholar 

  64. Paerl, H.W., Gardner, W.S., Havens, K.E., et al., Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients, Harmful Algae, 2016, vol. 54, p. 213.

    Article  PubMed  Google Scholar 

  65. Paerl, H.W., Otten, T.G., and Kudela, R., Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum, Environ. Sci. Technol., 2018, vol. 52, p. 5519.

    Article  CAS  PubMed  Google Scholar 

  66. Paul, V.J., Global warming and cyanobacterial harmful algal blooms, in Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, Adv. Exp. Med. Biol., Springer, 2008, vol. 619, p. 239.

  67. Pei, Y., Xu, R., Hilt, S., and Chang, X., Effects of cyanobacterial secondary metabolites on phytoplankton community succession, in Co-Evolution of Secondary Metabolites, Ref. Ser. Phytochem., Cambridge: Springer, 2020, p. 323.

  68. Peter, A. and von Gunten, U., Oxidation kinetics of selected taste and odor compounds during ozonation of drinking water, Environ. Sci. Technol., 2007, vol. 41, p. 626.

    Article  CAS  PubMed  Google Scholar 

  69. Pham, T.L., Shimizu, K., Dao, T.S., et al., Microcystin uptake and biochemical responses in the freshwater clam Corbicula leana P., exposed to toxic and non-toxic Microcystis aeruginosa: evidence of tolerance cyanotoxins, Toxicol. Rep., 2015, vol. 2, p. 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Poliak, Yu.M., Zaytseva, T.B., Petrova, V.N., and Medvedeva, N.G., Development of mass cyanobacteria species under heavy metals pollution, Hydrobiol. J., 2011, vol. 47, no. 3, p. 75.

    Article  Google Scholar 

  71. Polyak, Yu.M., Azole compounds as a factor affecting mass species of cyanobacteria, Voda: Khim. Ekol., 2015, no. 12, p. 10.

  72. Polyak, Yu.M. and Sukharevich, V.I., Influence of nonylphenol on the cyanobacterium Microcystis aeruginosa under various redox conditions of the medium, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2016, vol. 12, no. 3, p. 23.

    Google Scholar 

  73. Polyak, Yu.M. and Sukharevich, V.I., Toxigenic cyanobacteria: distribution, regulation of toxin synthesis, and methods of their destruction, Voda: Khim. Ekol., 2017, nos. 11–12, p. 125.

  74. Polyak, Yu.M. and Sukharevich, V.I., Allelopathic interactions between plants and microorganisms in soil ecosystems, Biol. Bull. Rev., 2019a, vol. 9, no. 6, p. 562.

    Article  Google Scholar 

  75. Polyak, Yu.M. and Sukharevich, V.I., Benthic cyanobacteria: features of growth, physiology, and toxin formation, Reg. Ekol., 2019b, no. 2 (56), p. 57.

  76. Polyak, Y., Zaytseva, T., and Medvedeva, N., Response of toxic cyanobacterium Microcystis aeruginosa to environmental pollution, Water Air Soil Pollut., 2013, vol. 224, no. 4, p. 1.

    Article  CAS  Google Scholar 

  77. Polyak, Yu.M., Shigaeva, T.D., Kudryavtseva, V.A., and Sukharevich, V.I., Influence of aeration and redox potential on the growth, photosynthesis and toxin formation of the cyanobacterium Microcystis aeruginosa 973, Voda: Khim. Ekol., 2014, no. 11, p. 60.

  78. Popova, A.A. and Koksharova, O.A., Neurotoxic non-proteinogenic amino acid β-N-methylamino-L-alanine and its role in biological systems, Biochemistry (Moscow), 2016, vol. 81, no. 8, p. 794.

    CAS  PubMed  Google Scholar 

  79. Potts, M., Desiccation tolerance of prokaryotes, Microbiol. Rev., 1994, vol. 58, p. 755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Quiblier, C., Wood, S., Echenique-Subiabre, I., et al., A review of current knowledge on toxic benthic freshwater cyanobacteria—ecology, toxin production and risk management, Water Res., 2013, vol. 47, p. 5464.

    Article  CAS  Google Scholar 

  81. Rastogi, R.P., Sinha, R.P., and Incharoensakdi, A., The cyanotoxin–microcystins: current overview, Rev. Environ. Sci. Biotechnol., 2014, vol. 13, no. 2, p. 215.

    Article  CAS  Google Scholar 

  82. Rastogi, R.P., Madamwar, D., and Incharoensakdi, A., Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies, Front. Microbiol., 2015, vol. 6, p. 1.

    Article  Google Scholar 

  83. Reynolds, C.S., Ecology of Phytoplankton (Ecology, Biodiversity and Conservation), Cambridge: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  84. Robarts, R.D., Waiser, M.J., Arts, M.T., and Evans, M.S., Seasonal and diel changes of dissolved oxygen in a hypertrophic prairie lake, Lakes Reservoirs: Res. Manage., 2005, vol. 10, p. 167.

    Article  CAS  Google Scholar 

  85. Rumyantsev, V.A., Kryukov, L.N., Pozdnyakov, Sh.R., and Zhukovskii, A.V., Cyanobacterial “bloom” of water—a source of environmental problems and a stimulus for innovation in Russia, O-vo. Sreda. Razv., 2011, no. 2, p. 222.

  86. Scholz, S.N., Esterhuizen-Londt, M., and Pflugmacher, S., Rise of toxic cyanobacterial blooms in temperate freshwater lakes: causes, correlations and possible countermeasures, Toxicol. Environ. Chem., 2017, vol. 99, no. 4, p. 543.

    Article  CAS  Google Scholar 

  87. Scott, J.T. and Marcarelli, A.M., Cyanobacteria in freshwater benthic environments, in The Ecology of Cyanobacteria, Dordrecht: Springer, 2012, p. 271.

    Google Scholar 

  88. Smith, F.M.J., Wood, S.A., van Ginkel, R., et al., First report of saxitoxin production by a species of the freshwater benthic cyanobacterium, Scytonema Agardh, Toxicon, 2011, vol. 57, p. 566.

    Article  CAS  PubMed  Google Scholar 

  89. Smith, F., Wood, S.A., Wilks, T., et al., Survey of Scytonema (Cyanobacteria) and associated saxitoxins in the littoral zone of recreational lakes in Canterbury (New Zealand), Phycologia, 2012, vol. 51, p. 542.

    Article  CAS  Google Scholar 

  90. Smith, D.R., King, K.W., and Williams, M.R., What is causing the harmful algal blooms in Lake Erie?, J. Soil Water Conserv., 2015, vol. 70, p. 27.

    Article  Google Scholar 

  91. Sulis, A., Buscarinu, P., Soru, O., and Sechi, G.M., Trophic state and toxic cyanobacteria density in optimization modeling of multi-reservoir water resource systems, Toxins, 2014, vol. 6, p. 1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tarasova, V.N., Androsova, V.I., and Sonina, A.V., Lishainiki. Fiziologiya, ekologiya, likhenoindikatsiya (Lichens: Physiology, Ecology, and Lichen Indication), Petrozavodsk: Petrozavodsk. Gos. Univ., 2012.

  93. Tonk, L., Bosch, K., Visser, P.M., and Huisman, J., Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa, Aquat. Microb. Ecol., 2007, vol. 46, p. 117.

    Article  Google Scholar 

  94. Turner, P.C., Gammie, A.J., Hollinrake, K., and Codd, G.A., Pneumonia associated with contact with cyanobacteria, Br. Med. J., 1990, vol. 300, p. 1440.

    Article  CAS  Google Scholar 

  95. Ueno, Y., Nagata, S., Tsutsumi, T., et al., Detection of microcystin, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay, Carcinogenesis, 1996, vol. 17, p. 1317.

    Article  CAS  PubMed  Google Scholar 

  96. Voloshko, L.N. and Pinevich, A.V., Diversity of cyanobacterial toxins, Astrakhan. Vestn. Ekol. Obraz., 2014, no. 1 (27), p. 68.

  97. Wagner, C. and Adrian, R., Cyanobacteria dominance: quantifying the effects of climate change, Limnol., Oceanogr., 2009, vol. 54, p. 2460.

    Article  Google Scholar 

  98. Wang, J., Wang, J., Xie, P., and Guo, N., Effects of nonylphenol on the growth and microcystin production of Microcystis strains, Environ. Res., 2007, vol. 103, p. 70.

    Article  CAS  PubMed  Google Scholar 

  99. Watanabe, M.F. and Oishi, S., Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions, Appl. Environ. Microbiol., 1985, vol. 49, no. 5, p. 1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Watson, S.B., Charlton, M., Yerubandi, R., et al., Off flavour in large waterbodies: physics, chemistry and biology in synchrony, Water Sci. Technol., 2007, vol. 55, p. 1.

    Article  CAS  PubMed  Google Scholar 

  101. Watson, S.B., Monis, P., Baker, P., and Giglio, S., Biochemistry and genetics of taste- and odor-producing cyanobacteria, Harmful Algae, 2016, vol. 54, p. 112.

    Article  CAS  PubMed  Google Scholar 

  102. Xue, L., Zhang, Y., Zhang, T., et al., Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria, Crit. Rev. Microbiol., 2005, vol. 31, p. 79.

    Article  PubMed  CAS  Google Scholar 

  103. Zilius, M., De Wit, R., and Bartoli, M., Response of sedimentary processes to cyanobacteria loading, J. Limnol., 2016, vol. 75, p. 236.

    Google Scholar 

Download references

Funding

This study was carried out as part of a state task with support from the Ministry of Education and Science of Russia, project no. АААА-А19-119020190122-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Polyak.

Additional information

Translated by D. Pavlov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukharevich, V.I., Polyak, Y.M. Global Occurrence of Cyanobacteria: Causes and Effects (Review). Inland Water Biol 13, 566–575 (2020). https://doi.org/10.1134/S1995082920060140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082920060140

Keywords:

Navigation