Skip to main content
Log in

Reactive Extrusion of Recycled Polycarbonate Using Chain Extenders

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Electronic waste (e-waste) problem becomes more critical due to increasing demand on upgrading of electrical-electronic devices in accordance with the latest technology nowadays. Polycarbonate (PC) is one of the most used plastics to produce computers, mobile phones and televisions thus recovering of PC wastes to develop new value-adding products has been an important task. The challenge of the PC recycling is thermal degradation under multiple thermo-mechanical processing cycles, which deteriorates molecular weight and properties of the polymer. In this study, a multi-functional anhydride chain extender (ANHY) and a multi-functional epoxy chain extender (EPOX) were used to offset thermal degradation of recycled PC (rPC) during extrusion. The effect of chain extenders on the properties of resulting materials was evaluated by rheology, tensile test, thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Both types of chain extenders enhanced the viscoelastic and mechanical properties of rPC, however ANHY had much higher chain extension reactivity than EPOX. ANHY increased complex viscosity by 58% and tensile modulus by 39%, whilst EPOX showed 26% increment in complex viscosity and 10% enhancement in tensile modulus on the base rPC. The formation of long chain branching in the samples containing chain extenders was observed from the rheology tests. TGA results also confirmed the efficiency of ANHY chain extender that shifted decomposition temperature of rPC to higher value than that of EPOX. The incorporation of chain extenders slightly increased glass transition temperature (Tg) of rPC in DMA and DSC test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. J. G. Kim, Polym. Chem. 11, 4830 (2020). https://doi.org/10.1039/C9PY01927H

    Article  CAS  Google Scholar 

  2. J. Feng, J. Hao, J. Du, and R. Yang, Polym. Degrad. Stab. 97, 108 (2012). https://doi.org/10.1016/j.polymdegradstab.2011.09.019

    Article  CAS  Google Scholar 

  3. S. Abalansa, B. El Mahrad, J. Icely, and A. Newton, Sustainability 13, 5302 (2021). https://doi.org/10.3390/su13095302

    Article  Google Scholar 

  4. A. L. C. Martinez, G. M. Barrera, C. E. B. Diaz, et al., Constr. Build. Mater. 201, 778 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.147

    Article  CAS  Google Scholar 

  5. J. M. Davis, Waste Manage. Res. 39, 101 (2021). https://doi.org/10.1177/0734242X20932225

    Article  Google Scholar 

  6. S. Montava-Jorda, D. Lascano, L. Quiles-Carrillo, et al., Polymers 12, 174 (2020). https://doi.org/10.3390/polym12010174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. K. Ragaert, L. Delva, and K. V. Geem, Waste Manage. 69, 24 (2017). https://doi.org/10.1016/j.wasman.2017.07.044

    Article  CAS  Google Scholar 

  8. D. Mahanta, S. A. Dayanidhi, S. Mohanty, and S. K. Nayak, Polym. Compos. 33, 2114 (2012). https://doi.org/10.1002/pc.22342

    Article  CAS  Google Scholar 

  9. J. M. Perez, J. L. Vilas, J. M. Laza, et al., J. Mater. Process. Technol. 210, 727 (2010). https://doi.org/10.1016/j.jmatprotec.2009.12.009

    Article  CAS  Google Scholar 

  10. Z. Q. Liu, A. M. Cunha, X. S. Yi, and A. C. Bernardo, J. Appl. Polym. Sci. 77, 1393 (2000). https://doi.org/10.1002/1097-4628(20000808)77:6<1393::AID-APP27>3.0.CO.2-4

    Article  CAS  Google Scholar 

  11. F. Ronkay, Acta Polytech. Hung. 10, 209 (2013). https://doi.org/10.12700/aph.10.01.2013.1.12

    Article  Google Scholar 

  12. E. V. Antonakou and D. S. Achilias, Waste Biomass Valorization 4, 9 (2013). https://doi.org/10.1007/s12649-012-9159-x

    Article  CAS  Google Scholar 

  13. B. N. Jang and C. A. Wilkie, Polym. Degrad. Stab. 86, 419 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.05.009

    Article  CAS  Google Scholar 

  14. B. N. Jang and C. A. Wilkie, Thermochim. Acta 426, 73 (2005). https://doi.org/10.1016/j.tca.2004.07.023

    Article  CAS  Google Scholar 

  15. Y. Feng, B. Wang, F. Wang, et al., Polym. Degrad. Stab. 107, 129 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.05.012

    Article  CAS  Google Scholar 

  16. K. Bocz, B. Molnar, G. Marosi, and F. Ronkay, J. Polym. Environ. 27, 343 (2019). https://doi.org/10.1007/s10924-018-1351-z

    Article  CAS  Google Scholar 

  17. B. Liu and Q. Xu, J. Mater. Sci. Chem. Eng. 1, 9 (2013). https://doi.org/10.4236/msce.2013.16002

    Article  CAS  Google Scholar 

  18. N. Torres, J. J. Robin, and B. Boutevin, J. Appl. Polym. Sci. 79, 1816 (2001). https://doi.org/10.1002/1097-4628(20010307)79:10<1816::AID-APP100>3.0.CO.2-R

    Article  CAS  Google Scholar 

  19. B. Tuna and G. Ozkoc, J. Polym. Environ. 25, 983 (2017). https://doi.org/10.1007/s10924-016-0856-6

    Article  CAS  Google Scholar 

  20. F. Daver, R. A. Gupta, and E. N. Kosior, J. Mater. Process. Technol. 204, 397 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.090

    Article  CAS  Google Scholar 

  21. L. Incarnato, P. Scarfato, L. D. Maio, and D. Acierno, Polymer 41, 6825 (2000). https://doi.org/10.1016/S0032-3861(00)00032-X

    Article  CAS  Google Scholar 

  22. F. Awaja, F. Daver, and E. N. Kosior, Polym. Eng. Sci. 44, 1579 (2004). https://doi.org/10.1002/pen.20155

    Article  CAS  Google Scholar 

  23. I. Coccorullo, L. Di Maio, S. Montesano, and L. Incarnato, Express Polym. Lett. 3, 84 (2009). https://doi.org/10.3144/expresspolymlett.2009.12

    Article  CAS  Google Scholar 

  24. A. A. Haralabakopoulos, D. Tsiourvas, and C. M. Paleos, J. Appl. Polym. Sci. 7, 2121 (1998). https://doi.org/10.1002/(SICI)1097-4628(19990328)71:13<2121::AID-APP1>3.0.CO.2-Y

    Article  Google Scholar 

  25. G. P. Karayannidis and E. A. Psalida, J. Appl. Polym. Sci. 77, 2206 (2000). https://doi.org/10.1002/1097-4628(20000906)77:10<2206::AID-APP14>3.0.CO.2-D

    Article  CAS  Google Scholar 

  26. E. V. Veselova, T. I. Andreeva, and M. V. Strelkova, Int. Polym. Sci. Technol. 41, 37 (2014). https://doi.org/10.1177/0307174X1404100910

    Article  Google Scholar 

  27. F. N. Cavalcanti, E. T. Teofilo, M. S. Rabello, and S. M. L. Silva, Polym. Eng. Sci. 47, 2155 (2007). https://doi.org/10.1002/pen.20912

    Article  CAS  Google Scholar 

  28. B. H. Bimestre and C. Saron, Mater. Res. 15, 467 (2012). https://doi.org/10.1590/S1516-14392012005000058

    Article  CAS  Google Scholar 

  29. S. Makkam and W. Harnnarongchai, Energy Procedia 56, 547 (2014). https://doi.org/10.1016/j.egypro.2014.07.191

    Article  CAS  Google Scholar 

  30. M. R. Snowdon, M. Abdelwahab, A. K. Mohanty, and M. Misra, Results Mater. 5, 1 (2020). https://doi.org/10.1016/j.rinma.2020.100060

    Article  Google Scholar 

  31. L. Xiao, H. Wang, Q. Qian, et al., Polym. Eng. Sci. 52, 2127 (2012). https://doi.org/10.1002/pen.23175

    Article  CAS  Google Scholar 

  32. A. A. Tavares, D. F. A. Silva, P. S. Lima, et al., Polym. Test. 50, 26 (2016). https://doi.org/10.1016/j.polymertesting.2015.11.020

    Article  CAS  Google Scholar 

  33. F. R. Beltran, C. Infante, M. U. Orden, and J. M. Urreaga, J. Cleaner Prod. 219, 46 (2019). https://doi.org/10.1016/j.jclepro.2019.01.206

    Article  CAS  Google Scholar 

  34. M. F. Casate de Andrade, G. Fonseca, A. R. Morales, and L. H. I. Mei, Adv. Polym. Technol. 37, 2053 (2018). https://doi.org/10.1002/adv.21863

    Article  CAS  Google Scholar 

  35. M. B. Coltelli, A. Bertolini, L. Aliotta, et al., Polymers 13, 3050 (2021). https://doi.org/10.3390/polym13183050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. M. Barletta, C. Aversa and M. Puopolo, J. Appl. Polym. Sci. 137, 49292 (2020). https://doi.org/10.1002/app.49292

    Article  CAS  Google Scholar 

  37. B. Tuna and H. Benkreira, Polym. Eng. Sci. 58, 1037 (2018). https://doi.org/10.1002/pen.24663

    Article  CAS  Google Scholar 

  38. E. D. Lago, C. Boaretti, F. Piovesan, et al., Materials 12, 49 (2019). https://doi.org/10.3390/ma12010049

    Article  CAS  Google Scholar 

  39. Y. Srithep, D. Pholharn, A. Dassakorn, and J. Morris, IOP Conf. Ser. Mater. Sci. Eng. 213, 12008 (2017). https://doi.org/10.1088/1757-899X/213/1/012008

  40. X. Tang, W. Guo, G. Yin, B. Li, and C. Wu, J. Appl. Polym. Sci. 104, 2602 (2007). https://doi.org/10.1002/app.24410

    Article  CAS  Google Scholar 

  41. M. Villalobos, A. Awojulu, T. Greeley, G. Turco, and G. Deeter, Energy 31, 3227 (2006). https://doi.org/10.1016/j.energy.2006.03.026

    Article  CAS  Google Scholar 

  42. S. Japon, L. Boogh, Y. Leterrier, and J.-A. E. Manson, Polymer 41, 5809 (2000). https://doi.org/10.1016/S0032-3861(99)00768-5

    Article  CAS  Google Scholar 

  43. Y.-M. Corre, J. Duchet, J. Reignier, and A. Maazouz, Rheol. Acta 50, 613 (2011). https://doi.org/10.1007/s00397-011-0538-1

    Article  CAS  Google Scholar 

  44. P. Saxena, P. Shukla, and M. S. Gau, Polym. Polym. Compos. 29, S11 (2021). https://doi.org/10.1177/0967391120984606

    Article  CAS  Google Scholar 

  45. H.-T. Chiu, J.-K. Huang, and J.-H. Huang, J. Chin. Inst. Eng. 42, 544 (2019). https://doi.org/10.1080/02533839.2019.1613929

    Article  CAS  Google Scholar 

  46. C. Chevallier, F. Becquart, C. Benoit, J.-C. Majeste, and M. Taha, Polym. Eng. Sci. 54, 2660 (2014). https://doi.org/10.1002/pen.23816

    Article  CAS  Google Scholar 

  47. T. Standau, M. Nofar, D. Dörr, H. Ruckdaschel, and V. Altstadt, Polym. Rev. 62, 296 (2022). https://doi.org/10.1080/15583724.2021.1918710

    Article  CAS  Google Scholar 

  48. M. V. Bazunova, R. A. Mustakimov, and E. I. Kulish, Russ. J. Phys. Chem. B 15, 888 (2021). https://doi.org/10.1134/S199079312105002X

    Article  CAS  Google Scholar 

  49. R. S. Smykovskaya, O. P. Kuznetsova, T. I. Medintseva, et al., Russ. J. Phys. Chem. B 16, 346 (2022). https://doi.org/10.1134/S1990793122010298

    Article  CAS  Google Scholar 

  50. H. Eslami and M. R. Kamal, J. Appl. Polym. Sci. 129, 2418 (2013). https://doi.org/10.1002/app.38449

    Article  CAS  Google Scholar 

  51. J. Song, J. Mi, H. Zhou, X. Wang, and Y. Zhang, Polym. Degrad. Stab. 157, 143 (2018). https://doi.org/10.1016/j.polymdegradstab.2018.10.009

    Article  CAS  Google Scholar 

  52. N. Yahyaee, A. Javadi, H. Garmabi, and A. Khaki, Macromol. Mater. Eng. 305, 1900423 (2020). https://doi.org/10.1002/mame.201900423

    Article  CAS  Google Scholar 

  53. A. Ghanbari, M. C. Heuzey, P. J. Carreau, and M. T. Ton-That, Polymer 54, 1361 (2013). https://doi.org/10.1016/j.polymer.2012.12.066

    Article  CAS  Google Scholar 

  54. R. Al-Itry, K. Lamnawar, and A. Maazouz, Eur. Polym. J. 58, 90 (2014). https://doi.org/10.1016/j.eurpolymj.2014.06.013

    Article  CAS  Google Scholar 

  55. Y. V. Tertyshnaya, A. V. Khvatov, and A. A. Popov, Russ. J. Phys. Chem. B 16, 162 (2022). https://doi.org/10.1134/S1990793122010304

    Article  CAS  Google Scholar 

  56. T. V. Pokholok, S. M. Lomakin, and I. G. Kalinina, Russ. J. Phys. Chem. B 16, 155 (2022). https://doi.org/10.1134/S1990793122010250

    Article  CAS  Google Scholar 

  57. H.-T. Chiu, J.-K. Huang, M.-T. Kuo, and J.-H. Huang, J. Polym. Res. 25, 124 (2018). https://doi.org/10.1007/s10965-018-1522-6

    Article  CAS  Google Scholar 

  58. S. C. Ozmen, G. Ozkoc, and E. Serhatli, Polym. Degrad. Stab. 162, 76 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.01.026

    Article  CAS  Google Scholar 

  59. R. Khankrua, S. Pivsa-Art, H. Hiroyuki, and S. Suttiruengwong, Polym. Degrad. Stab. 108, 232 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.04.019

    Article  CAS  Google Scholar 

  60. F. Carrasco, P. Pages, J. Gamez-Perez, O. O. Santana, and M. L. Maspoch, Polym. Degrad. Stab. 95, 116 (2010). https://doi.org/10.1016/j.polymdegradstab.2009.11.045

    Article  CAS  Google Scholar 

  61. F. R. Beltrán, E. Climent-Pascual, M. U. de la Orden, and J. M. Urreaga, Polym. Degrad. Stab. 171, 109045 (2020). https://doi.org/10.1016/j.polymdegradstab.2019.109045

    Article  CAS  Google Scholar 

  62. M. Buccella, A. Dorigato, E. Pasqualini, M. Caldara, and L. Fambri, Polym. Eng. Sci. 54, 158 (2014). https://doi.org/10.1002/pen.23547

    Article  CAS  Google Scholar 

  63. T. G. Fox and P. J. Flory, J. Appl. Phys. 21, 581 (1950). https://doi.org/10.1063/1.1699711

    Article  CAS  Google Scholar 

  64. Y. Wang, Y. Li, W. Wang, et al., J. Appl. Polym. Sci. 136, 47537 (2019). https://doi.org/10.1002/app.47537

    Article  CAS  Google Scholar 

  65. S. S. Pesetskii, B. Jurkowski, O. V. Filimonov, V. N. Koval, and V. V. Golubovich, J. Appl. Polym. Sci. 119, 225 (2011). https://doi.org/10.1002/app.32532

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Kirsehir Ahi Evran University Scientific Research Project Coordination Unit, Project no. MMF.A4.20.002. The author acknowledges to BASF, Germany for providing Joncryl ADR 3400 and 4300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tuna.

Ethics declarations

The author declares that she has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuna, B. Reactive Extrusion of Recycled Polycarbonate Using Chain Extenders. Russ. J. Phys. Chem. B 17, 196–205 (2023). https://doi.org/10.1134/S1990793123010281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123010281

Keywords:

Navigation