Skip to main content
Log in

Solvent Effect on the Nonlinear Optical Property in Cr(CO)3L Complexes (L = η6-Benzene and η6-Graphene): A Theoretical Study

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The present research, Cr(CO)3L complexes (L = η6-Benzene and η6-Graphene) were optimized at the B3LYP*/LANL2DZ level of theory. Stability of two isomers of Cr(CO)36-Graphene) complex was compared. Dipole moment, isotropic polarizability (αiso), first hyperpolarizability (βtot) and second hyperpolarizability (γ) parameters of the studied complexes were computed. The impact of solvent on these parameters were investigated using polarizable continuum model (PCM). Correlation of the nonlinear optical (NLO) properties with Onsager function, McRae function (FMcRae(ε)) and Suppan function (FSuppan(ε)) were illustrated. Frequency-dependent of the polarizability, first hyperpolarizability and second hyperpolarizability parameters were explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. A. J. Pearson, Metallo-Organic Chemistry (Wiley, New York, 1985).

    Google Scholar 

  2. F. Nunzi, N. Re, F. Mercuri, and A. Sgamellotti, J. Phys. Chem. B 10, 10622 (2002).

    Article  Google Scholar 

  3. R. C. Dunbar, Phys. Chem. A 106, 9809 (2002).

    Article  CAS  Google Scholar 

  4. J. O. C. Jiménez-Halla, J. Robles, and M. Sola, J. Phys. Chem. A 112, 1202 (2008).

    Article  PubMed  Google Scholar 

  5. S. K. Mandal and A. Sarkar, J. Org. Chem. 64, 2454 (1999).

    Article  CAS  Google Scholar 

  6. B. C. Maity, V. M. Swamy, and A. Sarkar, Tetrahedron Lett. 42, 4373 (2001).

    Article  CAS  Google Scholar 

  7. C. Bolm and K. Muniz, Chem. Soc. Rev. 28, 51 (1999).

    Article  CAS  Google Scholar 

  8. S. Sur, C. S. Ganesh, D. Pal, et al., J. Org. Chem. 61, 8362 (1996).

    Article  CAS  Google Scholar 

  9. M. Rosillo, G. Dominguez, and J. Perez-Castells, Chem. Soc. Rev. 36, 1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. C. H. Suresh, N. Koga, and S. R. Gadre, Organometallics 19, 3008 (2000).

    Article  CAS  Google Scholar 

  11. L. Akilandeswari, M. Jaccob, and P. Venuvanalingam, J. Chem. Sci. 121, 859 (2009).

    Article  CAS  Google Scholar 

  12. J. T. Price and T. S. Sorensen, Can. J. Chem. 46, 515 (1968).

    Article  CAS  Google Scholar 

  13. J. T. Price and T. S. Sorensen, Can. J. Chem. 46, 515 (1968).

    Article  CAS  Google Scholar 

  14. D. V. Simion and T. S. Sorensen, J. Am. Chem. Soc. 118, 7345 (1996).

    Article  CAS  Google Scholar 

  15. P. V. R. Schleyer, B. Kiran, D. V. Simion, and T. S. Sorensen, J. Am. Chem. Soc. 122, 510 (2000).

    Article  CAS  Google Scholar 

  16. L. W. Jenneskens, W. H. D. Wolf, and F. Bickelhaupt, J. Organomet. Chem. 390, 171 (1990).

    Article  CAS  Google Scholar 

  17. S. M. Hubig, S. V. Lindeman, and J. K. Kochi, Coord. Chem. Rev. 200–202, 831 (2000).

    Article  Google Scholar 

  18. F. Feixas, J. O. C. Jiménez-Halla, E. Matito, J. Poater, and M. Sola, Pol. J. Chem. 81, 783 (2007).

    CAS  Google Scholar 

  19. A. Kalpana and L. Akilandeswari, Comput. Theor. Chem. 1069, 125 (2015).

    Article  CAS  Google Scholar 

  20. R. Ghiasi, Russ. J. Phys. Chem. A 86, 1537 (2012).

    Article  Google Scholar 

  21. P. Selvarengan and P. Kolandaivel, J. Mol. Struct.: THEOCHEM 617, 99 (2002).

    Article  CAS  Google Scholar 

  22. S. B. Allin, T. M. Leslie, and R. S. Lumpkin, Chem. Mater. 8, 428 (1996).

    Article  CAS  Google Scholar 

  23. A. J. A. Aquino, D. Tunega, G. Haberhauer, M. H. Gerzabek, and H. Lischka, J. Phys. Chem. A 106, 1862 (2002).

    Article  CAS  Google Scholar 

  24. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. M. Springborg, Specialist Periodical Reports: Chemical Modelling, Applications and Theory (Royal Society of Chemistry, Cambridge, UK, 2008).

    Google Scholar 

  26. A. Taha, O. M. I. Adly, and M. Shebl, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 140, 74 (2015).

    Article  CAS  Google Scholar 

  27. R. E. Skyner, J. L. McDonagh, C. R. Groom, T. V. Mourika, and J. B. O. Mitchell, Phys. Chem. Chem. Phys. 17, 6174 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. R. Kar and S. Pal, Int. J. Quantum Chem. 110, 1642 (2010).

    Article  CAS  Google Scholar 

  29. B. Jović, A. Nikolić, S. Petrović, et al., J. Struct. Chem. 55, 1616 (2014).

    Article  Google Scholar 

  30. Y.-K. Li, H.-Y. Wu, Q. Zhu, K.-X. Fu, and X.-Y. Li, Comput. Theor. Chem. 971, 65 (2011).

    Article  CAS  Google Scholar 

  31. J. Basavaraja, S. R. Inamdar, and H. M. S. Kumar, Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 137, 527 (2015).

    Article  CAS  Google Scholar 

  32. G. Ersan, O. G. Apul, and T. Karanfil, Water Res. 98, 28 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Y. Ouennoughi, H. E. Karce, D. Aggoun, T. Lanez, and E. Morallon, J. Organomet. Chem. 848, 344 (2017).

    Article  CAS  Google Scholar 

  34. M. Aydin, D. L. Akins, Comput. Theor. Chem. 1132, 12 (2018).

    Article  CAS  Google Scholar 

  35. C.-L. Wu, S.-H. Zhang, R.-J. Gou, F.-D. Ren, and S.-F. Zhu, Comput. Theor. Chem. 1127, 22 (2018).

    Article  CAS  Google Scholar 

  36. H. F. Dos Santos, M. A. Chagas, L. A. De Souza, et al., J. Phys. Chem. A 121 (14), 2839 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. M. Ganesan, N. Vedamanickam, and S. Paranthaman, J. Theor. Comput. Chem. 17, 1850009 (2018).

    Article  Google Scholar 

  38. D. Shen, P. Su, and W. Wu, Phys. Chem. Chem. Phys. 20, 26126 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. T.-J. Bi, L.-K. Xu, F. Wang, and X.-Y. Li, Phys. Chem. Chem. Phys. 20, 13178 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. O. V. Sizova, N. V. Ivanova, O. O. Lyubimova, and V. V. Sizov, Russ. J. Coord. Chem. 33, 523 (2007).

    Article  CAS  Google Scholar 

  41. R. S. Shamsiev and A. V. Drobyshev, Russ. J. Inorg. Chem. 58, 1506 (2013).

    Article  CAS  Google Scholar 

  42. N. N. Milani, R. Ghiasi, and A. Forghaniha, J. Appl. Spectrosc. 86, 1123 (2020).

    Article  CAS  Google Scholar 

  43. S. Kamrava, R. Ghiasi, and A. Marjani, Int. J. Chem. Kinetics 53, 901 (2021).

    Article  CAS  Google Scholar 

  44. P. Parsa, R. Ghiasi, and A. Marjani, Inorg. Chem. Commun. 124, 108479 (2021).

    Google Scholar 

  45. S. Kamrava, R. Ghiasi, and A. Marjani, J. Mol. Liq. 329, 115535 (2021).

    Article  CAS  Google Scholar 

  46. R. Ghiasi, R. Emami, and M. V. Sofiyani, J. Mol. Liq. 325, 115097 (2021).

    Article  CAS  Google Scholar 

  47. R. Ghiasi and N. N. Milani, Russ. J. Phys. Chem. B 15, S14 (2021).

    Article  Google Scholar 

  48. G. P. Mikhailov, Russ. J. Phys. Chem. B 14, 190 (2020).

    Article  CAS  Google Scholar 

  49. F. Azarakhshi and M. Khaleghian, Russ. J. Phys. Chem. B 15, 170 (2021).

    Article  Google Scholar 

  50. A. Ghaffar, S. Nawaz, A. Munawar, and W. Zierkiewicz, et al., Russ. J. Phys. Chem. B 15, S42 (2021).

    Article  Google Scholar 

  51. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  52. R. G. Parr and W. Yang, Density-Function Theory of Atoms and Molecules (Oxford Univ. Press, Oxford, UK, 1989).

    Google Scholar 

  53. O. Salomon, M. Reiher, and B. A. Hess, J. Chem. Phys. 117, 4729 (2002).

    Article  CAS  Google Scholar 

  54. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).

    Article  CAS  Google Scholar 

  55. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 284 (1985).

    Article  Google Scholar 

  56. A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).

    Article  CAS  Google Scholar 

  57. A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).

    CAS  Google Scholar 

  58. A. D. Mclean and M. Yoshimine, J. Chem. Phys. 47, 1927 (1967).

    Article  CAS  Google Scholar 

  59. D. Bishop and P. Norman, Handbook of Advanced Electronic and Photonic Materials and Devices, Ed. by H. S. Nalwa (Academic, San Diego, 2001), Vol. 9.

    Google Scholar 

  60. D. A. Keleiman, Phys. Rev. 126, 1977 (1962).

    Article  Google Scholar 

  61. T. Lu and F. Chen, J. Mol. Graph. Model 38, 314 (2012).

    Article  PubMed  Google Scholar 

  62. T. Lu and F. Chen, J. Comp. Chem. 33, 580 (2012).

    Article  Google Scholar 

  63. A. S. Hutama, Y. Hijikata, and S. Irle, J. Phys. Chem. C 121, 14888 (2017).

    Article  CAS  Google Scholar 

  64. V. E. Jubin, S. A. Rau, Y. Barsukov, S. Ethier, and I. Raganovich, Front. Phys. 10, 908694 (2022).

    Article  Google Scholar 

  65. L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).

    Article  CAS  Google Scholar 

  66. K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. H. Lee, S.-Y. An, and M. Cho, J. Phys. Chem. B 103, 4992 (1999).

    Article  CAS  Google Scholar 

  68. P. C. Ray and J. Leszczynski, Chem. Phys. Lett. 399, 162 (2004).

    Article  CAS  Google Scholar 

  69. E. Hendrickx, K. Clays, and A. Persoons, Acc. Chem. Res. 31, 675 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ghiasi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, R., Rahimi, M. Solvent Effect on the Nonlinear Optical Property in Cr(CO)3L Complexes (L = η6-Benzene and η6-Graphene): A Theoretical Study. Russ. J. Phys. Chem. B 17, 27–35 (2023). https://doi.org/10.1134/S1990793123010207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123010207

Keywords:

Navigation