Skip to main content
Log in

Femtosecond dynamics of primary processes in visual pigment rhodopsin

  • Chemical Physics of Biological Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The dynamics of the coherent photoisomerization of the 11-cis-retinal in bovine rhodopsin is studied by femtosecond time-resolved laser absorption spectroscopy with a resolution of 30 fs. Rhodopsin is excited with 500-, 535-, and 560-nm femtosecond pulses to produce different initial Franck-Condon states with different vibrational energies of the molecule in its electronically excited state. The time evolution of the photoinduced differential absorption spectra of rhodopsin is measured upon excitation with a femtosecond pulse in a spectral range from 400 to 720 nm. Oscillations in the time-resolved absorption of the rhodopsin photoproducts, such as photorhodopsin with a vibrationally excited all-trans-retinal and in its initial-state rhodopsin with a vibrationally excited 11-cis-retinal, are examined. It is demonstrated that these oscillations reflect the dynamics of coherent vibrational wavepackets. The Fourier transform of these oscillatory components yields frequencies, amplitudes, and initial phases of various vibrational modes involved in the motion the wavepackets in both photoproducts. The main vibrational modes manifest themselves at frequencies of 62 and 160 cm−1 for photorhodopsin and 44 and 142 cm−1 for initial-state rhodopsin. It is shown that these vibrational modes are directly involved in the coherent reaction under the study, with their amplitudes in the power spectrum produced by the Fourier transform of the kinetic curves being dependent on the wavelength of rhodopsin excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. D. Lamb, S. P. Collin, and E. N. Pugh, Nat. Rev. Neurosci. 8, 960 (2007).

    Article  CAS  Google Scholar 

  2. R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, et al., Science, New Ser. 254, 412 (1991).

    CAS  Google Scholar 

  3. L. A. Peteanu, R. W. Schoenlein, Q. Wang, et al., Proc. Natl. Acad. Sci. USA 90, 11762 (1993).

    Article  CAS  Google Scholar 

  4. G. Haran, E. A. Morlino, J. Matthes, et al., Phys. Chem. A 103, 2202 (1999).

    Article  CAS  Google Scholar 

  5. H. Kandori, Y. Katsuta, I. Msayoshi, et al., J. Am. Chem. Soc. 117, 2669 (1995).

    Article  CAS  Google Scholar 

  6. J. E. Kim, M. J. Tauber, and R. A. Mathies, Biochemistry 40, 13774 (2001).

    Article  CAS  Google Scholar 

  7. Y. Koyama, K. Kubo, M. Komori, et al., Photochem. Photobiol. 54, 3433 (1991).

    Article  Google Scholar 

  8. A. Cooper, Nature 282, 531 (1979).

    Article  CAS  Google Scholar 

  9. Y. Shichida, S. Matuoka, and T. Yoshizawa, Photochem. Photobiophys. 7, 221 (1984).

    CAS  Google Scholar 

  10. T. Mizukami, H. Kandori, Y. Shichida, et al., Proc. Natl. Acad. Sci. USA 90, 4072 (1993).

    Article  CAS  Google Scholar 

  11. Q. Wang, R. W. Schoenlein, L. A. Peteanu, et al., Science, New Ser. 266, 422 (1994).

    CAS  Google Scholar 

  12. O. A. Smitienko, I. V. Shelaev, F. E. Gostev, et al., Dokl. Biochem. Biophys. 421, 194 (2008).

    Article  CAS  Google Scholar 

  13. G. G. Kochendoerfer and R. A. Mathies, J. Phys. Chem. 100, 14526 (1996).

    Article  CAS  Google Scholar 

  14. O. A. Smitienko, M. N. Mozgovaya, I. V. Shelaev, et al., Biochemistry (Moscow) 75, 25 (2010).

    Article  CAS  Google Scholar 

  15. A. K. Frolov, F. E. Gostev, I. V. Shelaev, et al., Khim. Fiz. 26, 10 (2007).

    CAS  Google Scholar 

  16. R. Gonzalez-Luque, M. Garavelli, F. Bernardi, et al., Proc. Natl. Acad. Sci. USA 97, 9379 (2000).

    Article  CAS  Google Scholar 

  17. S. W. Lin, M. Groesbeek, I. van der Hoef, et al., J. Phys. Chem. B 102, 2787 (1998).

    Article  CAS  Google Scholar 

  18. J. E. Kim and R. A. Mathies, J. Phys. Chem. A 106, 8508 (2002).

    Article  CAS  Google Scholar 

  19. B. S. Hudson, B. E. Kohler, and K. Schulten, Excited States 6, 1 (1982).

    Article  CAS  Google Scholar 

  20. G. R. Loppnow and R. A. Mathies, Biophys. J. 54, 35 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shelaev.

Additional information

Original Russian Text © I.V. Shelaev, M.N. Mozgovaya, O.A. Smitienko, F.E. Gostev, T.B. Fel’dman, V.A. Nadtochenko, O.M. Sarkisov, M.A. Ostrovskii, 2014, published in Khimicheskaya Fizika, 2014, Vol. 33, No. 7, pp. 39–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelaev, I.V., Mozgovaya, M.N., Smitienko, O.A. et al. Femtosecond dynamics of primary processes in visual pigment rhodopsin. Russ. J. Phys. Chem. B 8, 510–517 (2014). https://doi.org/10.1134/S1990793114040101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793114040101

Keywords

Navigation