Skip to main content
Log in

Three-dimensional numerical simulation of the operation of the rotating-detonation chamber

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The aim of this work is to apply three-dimensional numerical simulation to determining the conditions of the stable operation of the rotating-detonation chamber (RDC), the thermal state of the chamber walls, as well as the most important parameters of the flow at the inlet and outlet, keeping in mind the possibility of placing the RDC between a compressor and a turbine in a prospective gas turbine installation. The model is based on a system of three-dimensional unsteady Reynolds-averaged Navier-Stokes, energy, and species conservation equations for a multicomponent reacting gas mixture supplemented by a turbulence model. The system is solved using a combined algorithm based on the finite-volume and particle methods. The capabilities of the computer program are demonstrated by the example of a circular RDC with inner and outer walls 260 and 306 mm in diameter and with axial introduction of a hydrogen-air mixture through an annular gap at the bottom of the chamber (with a relative area of 0.6). The detonation wave spun over the bottom at a frequency of ∼126000 rpm. Calculations have shown that such an RDC can operate in a steady mode with one detonation wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Voitsekhovskii, Dokl. Akad. Nauk SSSR 129, 1254 (1959).

    Google Scholar 

  2. Ya. B. Zel’dovich, Zh. Tekh. Fiz. 10, 1453 (1940).

    Google Scholar 

  3. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, Combust. Explos., Shock Waves 46, 52 (2010).

    Article  Google Scholar 

  4. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, J. Propuls. Power 22, 1204 (2006).

    Article  CAS  Google Scholar 

  5. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, Fiz. Goreniya Vzryva 41(4), 99 (2005).

    CAS  Google Scholar 

  6. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, Dokl. Phys. 54, 29 (2009).

    Article  CAS  Google Scholar 

  7. F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov, and Yu. A. Zholobov, Dokl. Phys. 55, 142 (2010).

    Article  CAS  Google Scholar 

  8. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, Combust. Explos., Shock Waves 45, 606 (2009).

    Article  Google Scholar 

  9. D. M. Davidenko, I. Gokalp, and A. N. Kudryavtsev, in Deflagrative and Detonative Combustion, Ed. by G. D. Roy and S. M. Frolov (Torus Press, Moscow, 2010), p. 27.

    Google Scholar 

  10. D. M. Davidenko, I. Gokalp, and A. N. Kudryavtsev, AIAA Paper No. 2008-2680 (2008).

  11. J. Kindracki, P. Wolanski, and Z. Gut, Shock Waves 21(2), 75 (2011).

    Article  Google Scholar 

  12. D. A. Schwer and K. Kailasanath, Proc. Combust. Inst. 33 (2010, in press); http://www.sciencedirect.com/science/article/pii/S1540748910003159.

  13. M. Hishida, T. Fujiwara, and P. Wolanski, Shock Waves 19(1), 1 (2009).

    Article  Google Scholar 

  14. Ye-Tao Shao, Meng Liu, and Jian-Ping Wang, Combust. Sci. Technol. 182, 1586 (2010).

    Article  CAS  Google Scholar 

  15. V. S. Ivanov and S. M. Frolov, Russ. J. Phys. Chem. B 4, 597 (2011).

    Article  Google Scholar 

  16. S. M. Frolov and V. S. Ivanov, in Deflagrative and Detonative Combustion, Ed. by G. D. Roy and S. M. Frolov (Torus Press, Moscow, 2010), p. 133.

    Google Scholar 

  17. S. B. Pope, Prog. Energy Combust. Sci. 11, 119 (1985).

    Article  Google Scholar 

  18. S. M. Frolov, V. Ya. Basevich, M. G. Neuhaus, and R. Tatschl, in Advanced Computation and Analysis of Combustion, Ed. by G. D. Roy, S. M. Frolov, and P. Givi (ENAS Publ., Moscow, 1997), p 537.

    Google Scholar 

  19. S. Patankar, Numerical Methods of Solution of Problems of Heat Transfer and Dynamics of Liquid (Energoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  20. S. M. Frolov, in Teaching Materials for the 4th European Summer School on Hydrogen Safety, Sept. 7–16, 2009, Corsica, France, Paper No. 12.

  21. V. Ya. Basevich and S. M. Frolov, Usp. Khim. 76, 927 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Frolov.

Additional information

Original Russian Text © S.M. Frolov, A.V. Dubrovskii, V.S. Ivanov, 2012, published in Khimicheskaya Fizika, 2012, Vol. 31, No. 3, pp. 32–45.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolov, S.M., Dubrovskii, A.V. & Ivanov, V.S. Three-dimensional numerical simulation of the operation of the rotating-detonation chamber. Russ. J. Phys. Chem. B 6, 276–288 (2012). https://doi.org/10.1134/S1990793112010071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793112010071

Keywords

Navigation