Skip to main content
Log in

Interaction of Abiraterone and Its Pharmacologically Active Metabolite D4A with Cytochrome P450 2C9 (CYP2C9)

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

We studied the interaction of the antitumor agent abiraterone and its pharmacologically active metabolite D4A, which is promising for use as an agent for the treatment of prostate cancer, with cytochrome P450 2C9 (CYP2C9). Using the absorption spectroscopy, it has been shown that both compounds under study cause spectral changes of CYP2C9, indicating the interaction of the nitrogen atom of the pyridine ring of the ligand with the heme iron ion of the active site of the enzyme. However, the ligand–enzyme interaction, which is mediated by water bound to the heme iron ion, is possible. Based on the spectral changes, the values of dissociation constants (KS) of the complexes of abiraterone and D4A with CYP2C9 were determined, which amounted to 1.73 ± 0.14 µM and 3.95 ± 0.16 µM, respectively. Both compounds inhibited the O-demethylase activity of CYP2C9 toward the substrate of this enzyme, naproxen. At a naproxen concentration of 100 µM, the concentrations of abiraterone, D4A, and sulfaphenazole, which inhibit CYP2C9 activity by 50% (IC50), were determined as 13.9 µM, 40 µM, and 41 µM, respectively. The data obtained can be used to predict drug-drug interactions at the CYP2C9 level when using abiraterone or D4A as an antitumor agent for the treatment of prostate cancer in complex pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Li, Z., Bishop, A.C., Alyamani, M., Garcia, J.A., Dreicer, R., Bunch, D., Liu, J., Upadhyay, S.K., Auchus, R.J., and Sharifi, N., Nature, 2015, vol. 523, pp. 347–351. https://doi.org/10.1038/nature14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yoshimoto, F.K. and Auchus, R.J., J. Steroid Biochem. Mol. Biol., 2015, vol. 151, pp. 52–65. https://doi.org/10.1016/j.jsbmb.2014.11.026

    Article  CAS  PubMed  Google Scholar 

  3. Attard, G., Reid, A.H., Auchus, R.J., Hughes, B.A., Cassidy, A.M., Thompson, E., Oommen, N.B., Folkerd, E., Dowsett, M., Arlt, W., and de Bono, J.S., J. Clin. Endocrinol. Metab., 2012, vol. 97, no. 2, pp. 507–516. https://doi.org/10.1210/jc.2011-2189

    Article  CAS  PubMed  Google Scholar 

  4. Li, Z., Alyamani, M., Li, J., Rogacki, K., Abazeed, M., Upadhyay, S.K., Balk, S.P., Taplin, M.E., Auchus, R.J., and Sharifi, N., Nature, 2016, vol. 533, no. 7604, pp. 547–551. https://doi.org/10.1038/nature17954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salvador, J.A., Pinto, R.M., and Silvestre, S.M., J. Steroid Biochem. Mol. Biol., 2013, vol. 137, pp. 199–222. https://doi.org/10.1016/j.jsbmb.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  6. Bonnet, C., Boudou-Rouquette, P., Azoulay-Rutman, E., Huillard, O., Golmard, J.-L., Carton, E., Noé, G., Vidal, M., Orvoen, G., Wakilian, A.C., Villeminey, C., Blanchet, B., Alexandre, J., Goldwasser, F., and Thomas-Schoemann, A., Cancer Chemother. Pharmacol., 2017, vol. 79, pp. 1051–1055. https://doi.org/10.1007/s00280-017-3291-z

    Article  CAS  PubMed  Google Scholar 

  7. del Re, M., Fogli, S., Derosa, L., Massari, F., de Souza, P., Crucitta, S., Bracarda, S., Santini, D., and Danesi, R., Cancer Treat. Rev., 2017, vol. 55, pp. 71–82. https://doi.org/10.1016/j.ctrv.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  8. Masamrekh, R.A., Kuzikov, A.V., Haurychenka, Y.I., Shcherbakov, K.A., Veselovsky, A.V., Filimo-nov, D.A., Dmitriev, A.V., Zavialova, M.G., Gilep, A.A., Shkel, T.V., Strushkevich, N.V., Usa-nov, S.A., Archakov, A.I., and Shumyantseva, V.V., Fundam. Clin. Pharmacol., 2020, vol. 34, no. 1, pp. 120–130. https://doi.org/10.1111/fcp.12497

    Article  CAS  PubMed  Google Scholar 

  9. Friedlander, T.W. and Ryan, C.J., Drug Management of Prostate Cancer, Figg, W., Chau, C., and Small, E., Eds., New York: Springer, 2010, pp. 91–100. https://doi.org/10.1007/978-1-60327-829-4_8

  10. Malikova, J., Brixius-Anderko, S., Udhane, S.S., Parween, S., Dick, B., Bernhardt, R., and Pandey, A.V., J. Steroid Biochem. Mol. Biol., 2017, vol. 174, pp. 192–200. https://doi.org/10.1016/j.jsbmb.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  11. Masamrekh, R., Filippova, T., Haurychenka, Y., Shcherbakov, K., Veselovsky, A., Strushkevich, N., Shkel, T., Gilep, A., Usanov, S., Shumyantseva, V., and Kuzikov, A., Steroids, 2020, vol. 154, p. 108528. https://doi.org/10.1016/j.steroids.2019.108528

    Article  CAS  PubMed  Google Scholar 

  12. Garrido, M., Peng, H.M., Yoshimoto, F.K., Upadhyay, S.K., Bratoeff, E., and Auchus, R.J., J. Steroid Biochem. Mol. Biol., 2014, vol. 143, pp. 1–10. https://doi.org/10.1016/j.jsbmb.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Masamrekh, R.A., Filippova, T.A., Haurychenka, Y.I., Sherbakov, K.A., Veselovsky, A.V., Shumyantseva, V.V., and Kuzikov, A.V., Steroids, 2020, vol. 162, p. 108693. https://doi.org/10.1016/j.steroids.2020.108693

    Article  CAS  PubMed  Google Scholar 

  14. Louet, M., Labbé, C.M., Fagnen, C., Aono, C.M., Homem-de-Mello, P., Villoutreix, B.O., and Miteva, M.A., PLoS One, 2018, vol. 13, no. 5, p. e0197249. https://doi.org/10.1371/journal.pone.0197249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daly, A.K., Rettie, A.E., Fowler, D.M., and Miners, J.O., J. Pers. Med., 2017, vol. 8, no. 1, p. 1. https://doi.org/10.3390/jpm8010001

    Article  PubMed Central  Google Scholar 

  16. Hoy, S.M., Drugs, 2013, vol. 73, no. 18, pp. 2077–2091. https://doi.org/10.1007/s40265-013-0150-z

    Article  CAS  PubMed  Google Scholar 

  17. Haidukevich, I.V., Sushko, T.A., Tumilovich, A.M., Grabovec, I.P., Usanov, S.A., and Gilep, A.A., Toxicol. In Vitro, 2018, vol. 50, pp. 249–256. https://doi.org/10.1016/j.tiv.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  18. Omura, T. and Sato, R., J. Biol. Chem., 1964, vol. 239, pp. 2379–2385.

    Article  CAS  PubMed  Google Scholar 

  19. Swain, N.A., Batchelor, D., Beaudoin, S., Bechle, B.M., Bradley, P.A., Brown, A.D., Brown, B., Butcher, K.J., Butt, R.P., Chapman, M.L., Denton, S., Ellis, D., Galan, S.R.G., Gaulier, S.M., Greener, B.S., de Groot, M.J., Glossop, M.S., Gurrell, I.K., Hannam, J., Johnson, M.S., Lin, Z., Markworth, C.J., Marron, B.E., Millan, D.S., Nakagawa, S., Pike, A., Printzenhoff, D., Rawson, D.J., Ransley, S.J., Reister, S.M., Sasaki, K., Storer, R.I., Stupple, P.A., and West, C.W., J. Med. Chem., 2017, vol. 60, no. 16, pp. 7029–7042. https://doi.org/10.1021/acs.jmedchem.7b00598

    Article  CAS  PubMed  Google Scholar 

  20. Trott, O. and Olson, A.J., J. Comput. Chem., 2010, vol. 31, no. 2, pp. 455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adasme, M.F., Linnemann, K.L., Bolz, S.N., Kaiser, F., Salentin, S., Haupt, V.J., and Schroe-der, M., Nucleic Acids Res., 2021, vol. 49, no. W1, pp. W530–W534. https://doi.org/10.1093/nar/gkab294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuzikov, A.V., Filippova, T.A., Masamrekh, R.A., and Shumyantseva, V.V., J. Electroanalytical Chemistry, 2022, vol. 904, p. 115937. https://doi.org/10.1016/j.jelechem.2021.115937

    Article  CAS  Google Scholar 

  23. Shumyantseva, V.V., Bulko, T.V., Koroleva, P.I., Sh-ikh, E.V., Makhova, A.A., Kisel, M.S., Haiduke-vich, I.V., and Gilep, A.A., Processes, 2022, vol. 10, no. 2, p. 383. https://doi.org/10.3390/pr10020383

    Article  CAS  Google Scholar 

  24. Nash, T., Biochem. J., 1953, vol. 55, no. 3, pp. 416–421. https://doi.org/10.1042/bj0550416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luthra, A., Denisov, I.G., and Sligar, S.G., Arch. Biochem. Biophys., 2011, vol. 507, no. 1, pp. 26–35. https://doi.org/10.1016/j.abb.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  26. Denisov, I.G., Frank, D.J., and Sligar, S.G., Pharmacol. Ther., 2009, vol. 124, no. 2, pp. 151–167. https://doi.org/10.1016/j.pharmthera.2009.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bourrié, M., Meunier, V., Berger, Y., and Fabre, G., J. Pharmacol. Exp. Ther., 1996, vol. 277, no. 1, pp. 321–332.

    PubMed  Google Scholar 

  28. Miners, J.O., Coulter, S., Tukey, R.H., Verone-se, M.E., and Birkett, D.J., Biochem. Pharmacol., 1996, vol. 51, no. 8, pp. 1003–1008. https://doi.org/10.1016/0006-2952(96)85085-4

    Article  CAS  PubMed  Google Scholar 

  29. van Booven, D., Marsh, S., McLeod, H., Carrillo, M.W., Sangkuhl, K., Klein, T.E., and Altman, R.B., Pharmacogenet. Genomics, 2010, vol. 20, no. 4, pp. 277–281. https://doi.org/10.1097/FPC.0b013e3283349e84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 17-75-20250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shumyantseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masamrekh, R.A., Kuzikov, A.V., Filippova, T.A. et al. Interaction of Abiraterone and Its Pharmacologically Active Metabolite D4A with Cytochrome P450 2C9 (CYP2C9). Biochem. Moscow Suppl. Ser. B 16, 328–339 (2022). https://doi.org/10.1134/S1990750822040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750822040059

Keywords:

Navigation