Skip to main content
Log in

Chlorpromazine-induced changes of endocytosis in blastomeres of the embryos of pond snail Lymnaea stagnalis L. and Eurasian weather loach Misgurnus fossilis L.

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Chlorpromazine causes distinct defects in normal development of early cleaving embryos of gastropod pond snail (Lymnaea stagnalis L.) and teleost Eurasian weather loach (Misgurnus fossilis L.): a decrease in blastomere contact surfaces following the rounding in gastropod embryo and a reduction of cleaving blastodisk surface in teleost. Right after the application of chlorpromazine fluorescence is visible as bright spots on the surface of blastomeres. Then spherical vesicles appear within the whole volume of the cells. In loach, association of chlorpromazine with the plasma membrane was observed in blastodisk but not in the yolk cell membrane. Electron microscopy has shown that chlorpromazine induces folding of the cell membrane. Experiments with fluorescent dextran probe demonstrate that chlorpromazine modifies the rate and character of the dextran uptake. Our results indicate that chlorpromazine binds to specific sites of plasmalemma and stimulates endocytosis. Patterns of chlorpromazine binding to the membrane and its effects on endocytosis are similar in teleost and gastropod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rappaport R. 1996. Cytokinesis in Animal Cells. N.Y.: Cambridge University Press.

    Book  Google Scholar 

  2. Montagnac G., Echard A., Chavrier Ph. 2008. Endocytic traffic in animal cell cytokinesis. Curr. Opin. Cell Biol. 20, 454–461.

    Article  PubMed  CAS  Google Scholar 

  3. Selman G.G., Waddington C.H. 1955. The mechanism of cell division in the cleavage of the newt’s egg. J. Exp. Biol. 32, 700–733.

    Google Scholar 

  4. Feng B., Schwarz H., Jesuthasan S. 2002. Furrow-specific endocytosis during cytokinesis of zebrafish blastomeres. Exp. Cell. Res. 279(1), 14–20.

    Article  PubMed  CAS  Google Scholar 

  5. Anitole K.G., Stahle P.L., Ridenour C.S., Lappas N.T., Brown K.M. 1988. Chlorpromazine-sensitive developmental processes in the sea urchin, Lytechinus pictus. I. Inhibition of cleavage, gastrulation and primary mesenchyme cell differentiation. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 9(1), 47–53.

    Google Scholar 

  6. Kola I., Folb P.I. 1986. Chlorpromazine inhibits the mitotic index, cell number, and formation of mouse blastocysts, and delays implantation of CBA mouse embryos. J. Reprod. Fertil. 76(2), 527–536.

    Article  PubMed  CAS  Google Scholar 

  7. Sheetz M.P., Singer S.J. 1974. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. USA. 71(11), 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  8. Lieber M.R., Lange Y., Weinstein R.S., Steck T.L. 1984. Interaction of chlorpromazine with the human erythrocyte membrane. J. Biol. Chem. 259(14), 9925–9234.

    Google Scholar 

  9. Jutila A., Söderlund T., Pakkanen A.L., Huttunen M., Kinnunen P.K. 2001. Comparison of the effects of clozapine, chlorpromazine, and haloperidol on membrane lateral heterogeneity. Chem. Phys. Lipids. 112(2), 151–163.

    Article  PubMed  CAS  Google Scholar 

  10. Oruch R., Lund A., Pryme I.F., Holmsen H. 2010. An intercalation mechanism as a mode of action exerted by psychotropic drugs: Results of altered phospholipid substrate availabilities in membranes? J. Chem. Biol. 3(2), 67–88.

    Article  PubMed  Google Scholar 

  11. Orlandi P.A., Fishman P.H. 1998. Filipin-dependent inhibition of cholera toxin: Evidence for toxin internalization and activation through caveolae-like domains. J. Cell. Biol. 141(4), 905–915.

    Article  PubMed  CAS  Google Scholar 

  12. Pho M.T., Ashok A., Atwood W.J. 2000. JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J. Virol. 74(5), 2288–2292.

    Article  PubMed  CAS  Google Scholar 

  13. Kostomarova A.A. 1975. Loach Misgurnus fossilis L. In: Problemy biologii razvitiya. Ob’ekty biologii razvitiya (Problems of Developmental Biology. Objects of Developmental Biology). M.: Nauka, p. 308–323.

    Google Scholar 

  14. Westerfield M. 2007. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish. Eugene: Univ. Oregon Press.

    Google Scholar 

  15. Mescheryakov V.N. 1975. Pond snail Lymnaea stagnalis L. In: Problemy biologii razvitiya. Ob’ekty biologii razvitiya (Problems of Developmental Biology. Objects of Developmental Biology). M.: Nauka, p. 53–94.

    Google Scholar 

  16. Nagy T., Elekes K. 2002. Ultrastructure of neuromuscular contacts in the embryonic pond snail Lymnaea stagnalis L. Acta. Biol. Hung. 53(1–2), 125–139.

    Article  CAS  Google Scholar 

  17. Elferink J.G.R. 1977. Fluorescence studies of membrane interactions of chlorpromazine and chlorimipramine. Biochem. Pharmacol. 26, 511–515.

    Article  PubMed  CAS  Google Scholar 

  18. Chen J.Y., Brunauer L.S., Chu F.C., Helsel C.M., Gedde M.M., Huestis W.H. 2003. Selective amphipathic nature of chlorpromazine binding to plasma membrane bilayers. Biochim. Biophys. Acta. 1616(1), 95–105.

    Article  PubMed  CAS  Google Scholar 

  19. Dachary-Prigent J., Dufourcq J., Lussan C., Boisseau M. 1979. Propranolol, chlorpromazine and platelet membrane: A fluorescence study of the drug-membrane interaction. Thromb. Res. 14(1), 15–22.

    Article  PubMed  CAS  Google Scholar 

  20. Rodgers W., Glaser M. 1991. Characterization of lipid domains in erythrocyte membranes. Proc. Natl. Acad. Sci. USA. 88(4), 1364–1368.

    Article  PubMed  CAS  Google Scholar 

  21. Wang L.H., Rothberg K.G., Anderson R.G. 1993. Misassembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell. Biol. 123(5), 1107–1117.

    Article  PubMed  CAS  Google Scholar 

  22. Ivanenkov V.V., Meshcheryakov V.N., Martynova L.E. 1990. Surface polarization in loach eggs and two-cell embryos: Correlations between surface relief, endocytosis and cortex contractility. Int. J. Dev. Biol. 34(3), 337–349.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Voronezhskaya.

Additional information

Original Russian Text © E.G. Ivashkin, E.E. Voronezhskaya, 2011, published in Biologicheskie Membrany, 2011, Vol. 28, No. 4, pp. 290–297.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivashkin, E.G., Voronezhskaya, E.E. Chlorpromazine-induced changes of endocytosis in blastomeres of the embryos of pond snail Lymnaea stagnalis L. and Eurasian weather loach Misgurnus fossilis L.. Biochem. Moscow Suppl. Ser. A 5, 242–248 (2011). https://doi.org/10.1134/S1990747811040052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747811040052

Keywords

Navigation