Skip to main content
Log in

Nuclear lamins regulate osteogenic differentiation of mesenchymal stem cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Absract

Nuclear lamins are the main proteins of the nuclear envelope providing nuclear-membrane strength. Recently, it became clear that lamins in cells play not only a structural role, but are also involved in regulation of gene expression. The LMNA gene encodes lamin A or C depending on the synthesizing splicing variant. The best-known LMNA mutation causes severe disorders in development known as progeria (premature aging syndrome). The disease is of rare occurrence. More frequently, point mutations in LMNA gene encoding lamin A/C result in so-called laminopathies, these diseases manifesting as tissue damage, mostly in tissues of mesenchymal origin. The mutations manifest in a tissue-specific manner: particular mutations always display the same disease phenotype. The nature of this phenomenon, as well as the mechanisms by which lamins regulate cell differentiation remain poorly understood. The aim of this study was to investigate the effect of different LMNA mutations on human mesenchimal stem cell (MSC) osteogenic differentiation and explore the possible interaction of lamins and Notch signaling pathway. We modified human MSCs with mutant LMNA bearing known mutations with tissue specific phenotype associated with different laminopathies. Differentiation was evaluated 21 days after its induction by number of differentiated cells, as well as by the expression level of specific osteogenic markers SPP, IBSP, and BGLAP. Some mutations enhance differentiation whereas others decrease its level. These findings support the notion that lamin A/C is involved in the regulation of MMSC differentiation. Introduction of mutant LMNA forms together with the activated Notch domain modified the expression of HEY1, a major target of Notch signaling. Thereby, one of the mechanisms involved in the regulation of MSC differentiation may be the interaction of lamins A/C with components of Notch signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MMSC:

multipotent mesenchymal stromal cell

AT:

adipose tissue

LMNA :

lamin A/C

LMNAwt :

lamin A/C wild type

SPP1 :

osteopontin

IBSP :

sialoprotein

BGLAP :

osteocalcin

References

  • Andersson, E.R, Sandberg, R, and Lendahl, U., Notch Signaling: Simplicity in Design, Versatility in Function, Development, 2011, vol. 138, pp. 3593–3612.

    Article  CAS  PubMed  Google Scholar 

  • Akter, R., Rivas, D., Geneau, G., Drissi, H., and Duque, G., Effect of Lamin A/C Knockdown on Osteoblast Differentiation and Function, J. Bone Miner. Res., 2009, vol. 24, pp. 283–293.

    Article  CAS  PubMed  Google Scholar 

  • Burke, B., and Stewart, C.L., The Nuclear Lamins: Flexibility in Function, Nat. Rev. Mol. Cell. Biol., 2013, vol. 14, pp. 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Dittmer, T.A. and Misteli, T., The Lamin Protein Family, Genome Biol., 2011, vol. 12, p. 222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitrieva, R.I., Minullina, I.R., Bilibina, A.A., Tarasova, O.V., Anisimov, S.V., and Zaritskey, A.Y., Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities, Cell Cycle., 2012, vol. 11, pp. 377–383.

    Article  CAS  PubMed  Google Scholar 

  • Hansson, E.M., Lanner, F., Das, D., Mutvei, A., Marklund, U., Ericson, J., Farnebo, F., Stumm, G., Stenmark, H., Andersson, E.R., and Lendahl, U., Control of Notch-ligand endocytosis by ligand-receptor interaction, J. Cell Sci., 2010, vol. 123, pp. 2931–2942.

    Article  CAS  PubMed  Google Scholar 

  • Hutchison, C.J. and Worman, H.J., A-type lamins: guardians of the soma? Nat. Cell Biol., 2004, vol. 6, pp. 1062–1067.

    Article  CAS  PubMed  Google Scholar 

  • Lund, E., Oldenburg, A.R., Delbarre, E., Freberg, C.T., Duband-Goulet, I., Eskeland, R., Buendia, B., and Collas, P., Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes, Genome Res., 2013, vol. 10, pp. 1580–1589.

    Article  Google Scholar 

  • Malashicheva, A., Kanzler, B., Tolkunova, E., Trono, D., and Tomilin, A., Lentivirus as a tool for lineage-specific gene manipulations, Genesis, 2007, vol. 45, pp. 456–459.

    Article  CAS  PubMed  Google Scholar 

  • Malashicheva, A.B., Kanzler, B, Tolkunova, E., Trono, D., and Tomilin, A., Lentivirus as a tool for lineage-specific gene manipulations, Tsitologiia, 2008, vol. 50, pp. 370–375.

    CAS  PubMed  Google Scholar 

  • Malashicheva, A.B., Zabirnik, A.S., Smolina, N.A., Dmitrieva, R.I., and Kostareva, A.A., Lamin A/C mutations alter differentiation potential of mesenchymal stem cells, Cell Tissue Biol., 2013, vol. 7, no. 4, pp. 325–328.

    Article  Google Scholar 

  • Rauner, M., Sipos, W., Goettsch, C., Wutzl, A., Foisner, R., Pietschmann, P., and Hofbauer, L.C., Inhibition of lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis, J. Bone Miner. Res., 2009, vol. 24, pp. 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi, P. and Misteli, T., Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing, Nat. Cell Biol., 2008, vol. 10, pp. 452–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber, K.H. and Kennedy, B.K., When Lamins go bad: Nuclear Structure and Disease, Cell, 2013, vol. 152, pp. 1365–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, K.L., and Foisner, R., Lamin-binding proteins, Cold Spring Harb. Perspect Biol., 2010, vol. 2, pp. a000554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuela, N., Bar, D.Z., and Gruenbaum, Y., Lamins in development, tissue maintenance and stress, EMBO Rep., 2012, vol. 13, pp. 1070–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Lian, Q., Zhu, G., Zhou, F., Sui, L., Tan, C., Mutalif, R.A., Navasankari, R., Zhang, Y., Tse, H.F., Stewart, C.L., and Colman, A., A Human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects, Cell Stem Cell, 2011, vol. 8, pp. 31–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Malashicheva.

Additional information

Original Russian Text © M.A. Bogdanova, A.Y. Gudkova, A.S. Zabirnik, E.V. Ignatieva, R.I. Dmitrieva, N.A. Smolina, A.A. Kostareva, A.B. Malashicheva, 2014, published in Tsitologiya, 2014, Vol. 56, No. 4, pp. 260–267.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanova, M.A., Gudkova, A.Y., Zabirnik, A.S. et al. Nuclear lamins regulate osteogenic differentiation of mesenchymal stem cells. Cell Tiss. Biol. 8, 292–298 (2014). https://doi.org/10.1134/S1990519X14040026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X14040026

Keywords

Navigation