Skip to main content
Log in

Lamin A/C mutations alter differentiation potential of mesenchymal stem cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Mutations in the lamin A/C gene (LMNA) lead to severe disorders collectively called laminopathies. The mechanisms by which lamin mutations cause the diseases are not clear. Since the mesenchymal lineages, adipose tissue in particular, are mostly affected in laminopathies, the aim of the study was to estimate the effect of LMNA mutations on differentiation of mesenchymal stem cells, adipose tissue stromal cells (ATSCs), into adipose lineages. ATSCs transduced with lentiviral vectors carrying LMNA gene mutations associated with various syndromes (myodystrophy, cardiomyopathy, lipodystrophy, progeroid syndrome) were induced to adipose differentiate. It was found that introduction of genetic constructions with LMNA gene point mutations G465D, R482L, and R527C promote adipogenic differentiation compared to wild-type lamin gene; mutation R471C reduced the differentiation. Introduction of R471C or R527C lamin mutations profoundly increased the expression of adipogenesis markers PPARG, SREBP1, and adipsin. Mutations in A/C lamin gene strongly and variously affect the differentiation of mesenchymal stem cells that probably underlie the pathogenic changes in patients with laminopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MSCs:

mesenchymal stem cells

ATSCs:

adipose tissue stromal cells

PPARG:

peroxisome proliferator-activated receptor-gamma

SREBP1:

sterol regulatory element-binding protein 1

References

  • Akter, R., Rivas, D., Geneau, G., Drissi, H., and Duque, G., Effect of lamin A/C knockdown on osteoblast differentiation and function, J. Bone Miner. Res., 2009, vol. 24, pp. 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Capanni, C., Cenni, V., Mattioli, E., Sabatelli, P., Ognibene, A., Columbaro, M., Parnaik, V.K., Wehnert, M., Maraldi, N.M., Squarzoni, S., and Lattanzi, G., Failure of lamin A/C to functionally assemble in R482L mutated familial partial lipodystrophy? Broblasts: altered intermolecularinteraction with emerin and implications for gene transcription, Exp. Cell Res., 2003, vol. 291, pp. 122–134.

    Article  PubMed  CAS  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.J., and Horwitz, E., Minimal criteria for defining multipotent mesenchymal stromal cells, Int. Soc. Cell. Ther., 2006, vol. 8, pp. 315–317.

    CAS  Google Scholar 

  • Espada, J., Varela, I., Flores, I., et al., Nuclear envelope defects cause stem cell dysfunction in premature-aging mice, J. Cell Biol., 2008, vol. 181, pp. 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Gotzmann, J. and Foisner, R., A-Type lamin complexes and regenerative potential: a step towards understanding laminopathic diseases? Histochem. Cell Biol., 2006, vol. 125, pp. 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Harper, M., Tillit, J., Kress, M., and Ernoult-Lange, M., Phosphorylation-dependent binding of human transcription factor MOK2 to lamin A/C, FEBS J., 2009, vol. 276, pp. 3137–3147.

    Article  PubMed  CAS  Google Scholar 

  • Ivorra, C., Kubicek, M., Gonzalez, J.M., Sanz-Gonzalez, S.M., Alvarez-Barrientos, A., O’Connor, J.E., Burke, B., and Andres, V., A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C, Genes Dev., 2006, vol. 20, pp. 307–320.

    Article  PubMed  CAS  Google Scholar 

  • Kind, J. and van Steensel, B., Genome-nuclear lamina interactions and gene regulation, Curr. Opin. Cell Biol., 2010, vol. 22, pp. 320–325.

    Article  PubMed  CAS  Google Scholar 

  • Lin, F. and Worman, H.J., Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C, J. Biol. Chem., 1993, vol. 268, pp. 16321–16326.

    PubMed  CAS  Google Scholar 

  • Lloyd, D.J., Trembath, R.C., and Shackleton, S., A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies, Hum. Mol. Genet., 2002, vol. 11, pp. 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Melcer, S., Hezroni, H., Rand, E., Nissim-Rafinia, M., Skoultchi, A.I., Stewart, C.L., Bustin, M., and Meshorer, E., Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation, Nat. Commun., 2012, vol. 3, p. 910.

    Article  PubMed  Google Scholar 

  • Muchir, A., Medioni, J., Laluc, M., Massart, C., Arimura, T., van der Kooi, A.J., Desguerre, I., Mayer, M., Ferrer, X., Briault, S., et al., Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations, Muscle Nerve, 2004, vol. 30, pp. 444–450.

    Article  PubMed  CAS  Google Scholar 

  • Prokocimer, M., Davidovich, M., Nissim-Rafnia, M., Wiesel-Motiuk, N., Bar, D.Z., Barkan, R., Meshorer, E., and Gruenbaum, Y., Nuclear lamins: key regulators of nuclear structure and activities, J. Cell Mol. Med., 2009, vol. 13, pp. 1059–1085.

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi, P. and Misteli, T., Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing, Nat. Cell Biol., 2008, vol. 10, pp. 452–459.

    Article  PubMed  CAS  Google Scholar 

  • Shumaker, D.K., Dechat, T., Kohlmaier, A., Adam, S.A., Bozovsky, M.R., Erdos, M.R., Eriksson, M., Goldman, A.E., Khuon, S., Collins, F.S., et al., Mutant nuclear lamin a leads to progressive alterations of epigenetic control in premature aging, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 8703–8708.

    Article  PubMed  CAS  Google Scholar 

  • Stierlé, V., Couprie, J., Ostlund, C., Krimm, I., Zinn-Justin, S., Hossenlopp, P., Worman, H.J., Courvalin, J.C., and Duband-Goulet, I., The carboxyl-terminal region common to lamins A and C contains a DNA binding domain, Biochemistry, 2003, vol. 42, pp. 4819–4828.

    Article  PubMed  Google Scholar 

  • Vlcek, S. and Foisner, R., Lamins and lamin-associated proteins in aging and disease, Curr. Opin. Cell Biol., 2007, vol. 19, pp. 298–304.

    Article  PubMed  CAS  Google Scholar 

  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H., Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng., 2001, vol. 7, pp. 211–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kostareva.

Additional information

Original Russian Text © A.B. Malashicheva, A.S. Zabirnik, N.A. Smolina, R.I. Dmitrieva, A.A. Kostareva, 2013, published in Tsitologiya, 2013, Vol. 55, No. 5, pp. 313–317.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malashicheva, A.B., Zabirnik, A.S., Smolina, N.A. et al. Lamin A/C mutations alter differentiation potential of mesenchymal stem cells. Cell Tiss. Biol. 7, 325–328 (2013). https://doi.org/10.1134/S1990519X1304010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X1304010X

Keywords

Navigation