Skip to main content
Log in

Recording changes in extracellular pH via confocal microscopy during generation of excitation potentials in higher plants

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The method of confocal microscopy was applied to pH changes recorded in the apoplast of the stem of a pumpkin seedling during the generation of the action potential and variation potential. To record the change in pH, the fluorescent probe FITC-dextran was used. An analysis of the obtained fluorescent images and the determination of the fluorescence spectra showed that FITC-dextran is located in the stemcell walls. The propagation of the action and variation potentials is accompanied by a transient increase in the probe fluorescence intensity, which indicates the alkalization of cell walls. This transient alkalization is suggested to be due to the temporary inactivation of electrogenic H+-pump in the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VP:

variation potential

AP:

action potential

I:

intensity of fluorescence

ΔU:

extracellularly recorded potential difference

References

  • Veselovskii, V.A. and Veselova, T.V., Lyuminestsentsiya rastenii (Luminescence of Plants), Moscow: Nauka, 1990.

    Google Scholar 

  • Vodeneev, V.A., Opritov, V.A., and Pyatygin, S.S., Reversible Changes of Extracellular pH during Action Potential Generation in a Higher Plant Cucurbita pepo, Fiziol. Rast., 2006, vol. 53, no. 4, pp. 538–545 [Russ. J. Plant Physiol. (Eng. Transl.), 2006, vol. 53, no. 4, pp. 481–487].

    Google Scholar 

  • Gamalei, Yu.V., Podvizhnaya setevaya organizatsiya plastid i mitokhondrii v rastitel’nykh kletkakh. Tsitologiia, 2006, vol. 48, no. 4, pp. 271–282.

    PubMed  Google Scholar 

  • Zatsepina, G.N. and Tsaplev, Yu.B., The Nature of Electric Polarity of a Higher Plant, Biofizika, 1980, vol. 25, no. 1, pp. 144–147.

    CAS  PubMed  Google Scholar 

  • Opritov, V.A., Pyatygin, S.S., and Retivin, V.G., Bioelektrogenez u vysshikh rastenii (Bioelectrogenesis in Higher Plants), Moscow: Nauka, 1991.

    Google Scholar 

  • Pyatygin, S.S., Opritov, V.A., and Vodeneev, V.A., Signaling Role of Action Potential in Higher Plants, Fiziol. Rast., 2008, vol. 55, no. 2, pp. 312–319 [Russ. J. Plant Physiol. (Eng. Transl.), 2008, vol. 55, no. 2, pp. 285–292].

    Google Scholar 

  • Feofanov, A.V., Spectral Laser Scanning Confocal Microscopy in Biological Studies, Usp. Biol. Khim., 2007, vol. 47, pp. 371–410.

    CAS  Google Scholar 

  • Beilby, M.J., Action Potential in Charophytes, Int. Rev. Cytol., 2007, vol. 257, pp. 43–82.

    Article  CAS  PubMed  Google Scholar 

  • Berg, R.H., Evaluation of Spectral Imaging for Plant Cell Analysis, J. Microscopy, 2004, vol. 214, pp. 174–181.

    Article  CAS  Google Scholar 

  • Felle, H.H. and Zimmermann, M.R., Systemic Signaling in Barley Through Action Potentials, Planta, 2007, vol. 226, pp. 203–214

    Article  CAS  PubMed  Google Scholar 

  • Fisahn, J., Herde, O., Willmitzer, L., and Pena-Cortes, H., Analysis of the Transient Increase in Cytosolic Ca2+ During the Action Potential of Higher Plants with High Temporal Resolution: Requirement of Ca2+ Transients for Induction of Jasmonic Acid Biosynthesis and Pinii Gene Expression, Plant Cell Physiol., 2004, vol. 45, pp. 456–459.

    Article  CAS  PubMed  Google Scholar 

  • Fromm, J. and Lautner, S., Electrical Signals and Their Physiological Significance in Plants, Plant Cell Environ., 2007, vol. 30, pp. 249–257

    Article  CAS  PubMed  Google Scholar 

  • Hedrich, R., Neimanis, S., Savchenko, G., Felle, H.H., Kaiser, W.M., and Heber, U., Changes in Apoplastic pH and Membrane Potential in Leaves in Relation to Stomatal Responses to CO2, Malate, Abscisic Acid or Interruption of Water Supply, Planta, 2001, vol. 213, pp. 594–601.

    Article  CAS  PubMed  Google Scholar 

  • Hepler, P.K. and Gunning, B.E.S., Confocal Fluorescence Microscopy of Plant Cells, Protoplasma, 1998, vol. 201, pp. 121–157.

    Article  Google Scholar 

  • Hoffman, B. and Cosegarten, H., FITC-Dextran for Measuring Apoplast pH and Apoplastic pH Gradients between Various Cell Types in Sunflower Leaves, Physiol. Plant., 1995, vol. 95, pp. 327–335.

    Article  Google Scholar 

  • Julien, J.L. and Frachisse, J.M., Involvement of the Proton Pump and Proton Conductance Change in the Wave of Depolarization Induced by Wounding in Bidens pilosa, Can. J. Bot., 1992, vol. 70, pp. 1451–1458.

    CAS  Google Scholar 

  • Lewis, B.D., Karlin-Neumann, G., Davis, R.W., and Spalding, E.P., Ca2+-Activated Anion Channels and Membrane Depolarizations Induced by Blue Light and Cold in Arabidopsis Seedlings, Plant Physiol., 1997, vol. 114, pp. 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  • Li, B.-B., Gao, Z.-H., Zhou, X.-Y., Ren, H.-B., Xie, M., Fan, Y.-J., Hu, J.-F., and Jia, W.-S., A Confocal Technique Applicable to Studies of Cellular pH-related Signaling in Plants, J. Integr. Plant Biol., 2008, vol. 50, pp. 682–690.

    Article  PubMed  Google Scholar 

  • Rousset, M., de Roo, M., Guennec, J.-Y., and Pichon, O., Electrophysiological Characterization of Tomato Hypocotyls Putative Action Potentials Induced by Cotyledon Heating, Physiol. Plant., 2002, vol. 115, pp. 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Shimmen, T., Mimura, T., Kikuyama, M., and Tazawa, M., Characean Cells As a Tool for Studying Electrophysiological Characteristics of Plant Cell, Cell Struct. Funct., 1994, vol. 19, pp. 263–278.

    Article  CAS  PubMed  Google Scholar 

  • Stahlberg, R. and Cosgrove, D.J., Induction and Ionic Basis of Slow Wave Potentials in Seedlings of Pisum sativum L., Planta, 1996, vol. 200, pp. 416–425.

    Article  CAS  PubMed  Google Scholar 

  • Tyerman, S.D., Beilby, M., Whittington, J., Juswono, U., Neyman, L., and Shabala, S., Oscillations in Proton Transport Revealed from Simultaneous Measurements of Net Current and Net Proton Fluxes from Isolated Root Protopasts: Mife Meets Patch-Clamp, Aust. J. Plant. Physiol., 2001, vol. 28, pp. 591–604.

    CAS  Google Scholar 

  • Vodeneev, V.A., Opritov, V.A., and Pyatygin, S.S., Reversible Change of Extracellular Ph at the Generation of Mechano-Induced Electrical Reaction in a Stem of Cucurbita pepo, Plant Signal. Behavior., 2007, vol. 2, pp. 267–268.

    Google Scholar 

  • Wymer, C.L., Beven, A.F., Boudonck, K., and Lloyd, C.W., Confocal Microscopy of Plant Cells, Methods Mol Biol., 1999, vol. 122, pp. 103–130.

    CAS  PubMed  Google Scholar 

  • Zimmermann, M.R. and Felle, H.H., Dissection of Heat-Induced Systemic Signals: Superiority of Ion Fluxes to Voltage Changes in Substomatal Cavities, Planta, 2009, vol. 229, pp. 539–547.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vodeneev.

Additional information

Original Russian Text © V.A. Vodeneev, E.K. Akinchits, L.A. Orlova, V.S. Sukhov, I.V. Balalaeva, 2010, published in Tsitologiya, Vol. 52, No. 5, 2010, pp. 549–554.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vodeneev, V.A., Akinchits, E.K., Orlova, L.A. et al. Recording changes in extracellular pH via confocal microscopy during generation of excitation potentials in higher plants. Cell Tiss. Biol. 4, 471–475 (2010). https://doi.org/10.1134/S1990519X1005010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X1005010X

Key words

Navigation