Skip to main content
Log in

Mutual influence of serotonin and dopamine on the functioning of the dorsal striatum and motor activity (hypothetical mechanism)

  • Theoretical Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Here we analyzed the mechanisms of mutual influence of serotonin, dopamine, and acetylcholine on the activity of neurons of the dorsal striatum and motor activity. We used the data that show that 5-HT1B, D1, and M4 receptors of these neuromodulators are predominantly located on the striatonigral neurons and 5-HT2A, D2, and M1 receptors are located on the striatopallidal neurons, which give rise, respectively, to the direct and indirect pathways via the basal ganglia. Cholinergic interneurons of the striatum have 5-HT1A, 5-HT2C, 5-HT7, and D2 receptors and serotonergic terminals have 5-HT1A auto-receptors. On the basis of the types of G-proteins that are coupled to the mentioned receptors and our previously proposed modulation rules for strong corticostriatal inputs, we proposed a hypothetical mechanism of mutual influence of neuromodulators on the functioning of neuronal network: motor cortex-basal ganglia-thalamus-motor cortex. According to this mechanism, enhancement of the action on dopamine receptors, as well as a decrease in the action on serotonin and muscarinic receptors on spiny neurons of the dorsal (motor) striatum, must synergistically promote enhancement of locomotor activity due to an increase in disinhibition of thalamic cells via direct pathway through the basal ganglia and a decrease in their inhibition via an indirect pathway through the basal ganglia. According to the proposed mechanism, enhancement of the motor activity during Parkinson’s disease, as well as weakening of catalepsy induced by typical antipsychotic drugs (antagonists of D2 receptors), may be caused by antagonists of 5-HT1B, 5-HT2A, 5-HT2C, and 5-HT7 receptors. For weakening of dyskinesia induced by levodopa during treatment of Parkinson’s disease, it may be worth-while to use agonists of 5-HT1B and 5-HT2A receptors. The use of agonists of 5-HT1A receptors for weakening of levodopa-induced dyskinesia should be combined with antagonists of 5-HT2C receptors to prevent aggravation of the symptoms of Parkinson’s disease. The proposed mechanism allows one to explain the contradictory data of the effect of serotonin via different types of receptors on both weakening of dyskinesia and enhancement of motor activity. The consequences of the proposed mechanism are in agreement with the known results of experimental studies and may be useful for the development of new drugs for the treatment of Parkinson’s disease and novel atypical antipsychotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BG:

basal ganglia

PD:

Parkinson’s disease

GPe and GPi:

external and internal parts of the globus pallidus

LTD:

long-term depression

LID:

levodopa-induced dyskinesia

LTP:

long-term potentiation

MC-BG-Th-MC:

neuronal network motor cortex-basal ganglia-thalamus-motor cortex

SNpc and SNpr:

substantia nigra pars compacta and pars reticulata

References

  1. Prinz, A., Selesnew, L.M., Liss, B., Roeper, J., and Carlsson, T., Exp. Neurol., 2013, vol. 248, pp. 236–245.

    CAS  PubMed  Google Scholar 

  2. Radja, F., Descarries, L., Dewar, K.M., and Reader, T.A., Brain Res., 1993, vol. 606, no. 2, pp. 273–285.

    CAS  PubMed  Google Scholar 

  3. Huot, P. and Fox, S.H., Exp. Brain Res., 2013, vol. 230, no. 4, pp. 463–476.

    CAS  PubMed  Google Scholar 

  4. Carta, M., Carlsson, T., Muñoz, A., Kirik, D., and Björklund, A., Prog. Brain Res., 2008, vol. 172, pp. 465–478.

    CAS  PubMed  Google Scholar 

  5. Carta, M. and Bezard, E., Neuroscience, 2011, vol. 198, pp. 245–251.

    CAS  PubMed  Google Scholar 

  6. Lindgren, H.S., Andersson, D.R., Lagerkvist, S., Nissbrandt, H., and Cenci, M.A., J. Neurochem., 2010, vol. 112, no. 6, pp. 1465–1476.

    CAS  PubMed  Google Scholar 

  7. Rylander, D., Parkinsonism Relat. Disord., 2012, vol. 18, no. Suppl. 1, pp. 126–128.

    Google Scholar 

  8. Nahimi, A., Høltzermann, M., Landau, A.M., Simonsen, M., Jakobsen, S., Alstrup, A.K., Vang, K., Møller, A., Wegener, G., Gjedde, A., and Doudet, D.J., J. Neurochem., 2012, vol. 120, no. 5, pp. 806–817.

    CAS  PubMed  Google Scholar 

  9. Kreiss, D.S. and Lucki, I., J. Pharmacol. Exp. Ther., 1994, vol. 269, no. 3, pp. 1268–1279.

    CAS  PubMed  Google Scholar 

  10. Fox, S.H., Chuang, R., and Brotchie, J.M., Prog. Brain Res., 2008, vol. 172, pp. 479–494.

    CAS  PubMed  Google Scholar 

  11. Bishop, C., Krolewski, D.M., Eskow, K.L., Barnum, C.J., Dupre, K.B., Deak, T., and Walker, P.D., J. Neurosci. Res., 2009, vol. 87, no. 7, pp. 1645–1658.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Dupre, K.B., Eskow, K.L., Barnum, C.J., and Bishop, C., Neuropharmacology, 2008, vol. 55, no. 8, pp. 1321–1328.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Dupre, K.B., Ostock, C.Y., Eskow Jaunarajs, K.L., Button, T., Savage, I.M., Wolf, W., and Bishop, C., Exp. Neurol., 2011, vol. 229, no. 2, pp. 288–299.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Mignon, L. and Wolf, W.A., Psychopharmacology (Berl.), 2007, vol. 192, no. 1, pp. 49–59.

    CAS  Google Scholar 

  15. Fisone, G. and Bezard, E., Int. Rev. Neurobiol., 2011, vol. 98, pp. 95–122.

    CAS  PubMed  Google Scholar 

  16. Silkis, I., Biosystems, 2001, vol. 59, no. 1, pp. 7–14.

    CAS  PubMed  Google Scholar 

  17. Silkis, I., Neurosci. Behav. Physiol., 2006, vol. 36, no. 2, pp. 163–175.

    CAS  Google Scholar 

  18. Silkis, I., Neurochem. J., 2013, vol. 7, no. 4, pp. 270–277.

    CAS  Google Scholar 

  19. Sil’kis, I.G., Neurosci. Behav. Physiol., 2003, vol. 33, no. 4, pp. 379–386.

    PubMed  Google Scholar 

  20. Parent, A. and Hazrati, L.N., Brain Res. Rev., 1995, vol. 20, no. 1, pp. 91–127.

    CAS  PubMed  Google Scholar 

  21. Alexander, G.E., Crutcher, M.D., Trends Neurosci., 1990, vol. 13, no. 7, pp. 266–272.

    CAS  PubMed  Google Scholar 

  22. Romanelli, P., Esposito, V., Schaal, D.W., and Heit, G., Brain Res. Rev., 2005, vol. 48, no. 1, pp. 112–128.

    PubMed  Google Scholar 

  23. Middleton, F.A. and Strick, P.L., Brain Cogn., 2000, vol. 42, no. 2, pp. 183–200.

    CAS  PubMed  Google Scholar 

  24. Middleton, F.A. and Strick, P.L., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 16, pp. 8683–8687.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. de las. Mengual, E., and Gimenes-Amaya, J.M., NeuroReport, 1998, vol. 9, no. 2, pp. 275–278.

    PubMed  Google Scholar 

  26. Gerfen, C., Engber, T., Mahan, L., Susel, Z., Chase, T., Monsma, F., and Sibley, D., Science, 1990, vol. 250, no. 4986, pp. 1429–1432.

    CAS  PubMed  Google Scholar 

  27. Bertran-Gonzalez, J., Hervé, D., Girault, J.A., and Valjent, E., Front. Neuroanat., 2010, p. 4. doi: pii: 136. 10.3389/fnana.2010.00136

    Google Scholar 

  28. Borroto-Escuela, D.O., Romero-Fernandez, W., Tarakanov, A.O., Marcellino, D., Ciruela, F., Agnati, L.F., and Fuxe, K., Biochem. Biophys. Res. Commun., 2010, vol. 401, no. 4, pp. 605–610.

    CAS  PubMed  Google Scholar 

  29. Lukasiewicz, S., Polit, A., Kedracka-Krok, S., Wedzony, K., Mackowiak, M., and Dziedzicka-Wasylewska, M., Biochim. Biophys. Acta, 2010, vol. 1803, no. 12, pp. 1347–1358.

    CAS  PubMed  Google Scholar 

  30. Compan, V., Segu, L., Buhot, M.C., and Daszuta, A., Brain Res., 1998, vol. 793, nos 1–2, pp. 103–111.

    CAS  PubMed  Google Scholar 

  31. Waeber, C., Dietl, M.M., Hoyer, D., Probst, A., and Palacios, J.M., Neurosci. Let., 1988, vol. 88, no. 1, pp. 11–16.

    CAS  Google Scholar 

  32. Zhang, X., Andren, P.E., Greengard, P., and Svenningsson, P., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 6, pp. 2163–2168.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Castro, M.E., Pascual, J., Romón, T., Berciano, J., Figols, J., and Pazos, A., Brain Res., 1998, vol. 790, nos. 1–2, pp. 323–328.

    CAS  PubMed  Google Scholar 

  34. Sari, Y., Miquel, M.C., Brisorgueil, M.J., Ruiz, G., Doucet, E., Hamon, M., and Vergé, D., Neuroscience, 1999, vol. 88, no. 3, pp. 899–915.

    CAS  PubMed  Google Scholar 

  35. Varnäs, K., Hurd, Y.L., and Hall, H., Synapse, 2005, vol. 56, no. 1, pp. 21–28.

    PubMed  Google Scholar 

  36. De Groote, L., Olivier, B., and Westenberg, H.G., Eur. J. Pharmacol., 2003, vol. 476, nos 1–2, pp. 71–77.

    PubMed  Google Scholar 

  37. Ward, R.P. and Dorsa, D.M., Neuroscience, 1999, vol. 89, no. 3, pp. 927–938.

    CAS  PubMed  Google Scholar 

  38. Basura, G.J. and Walker, P.D., Mol. Brain Res., 2001, vol. 92, nos. 1–2, pp. 66–77.

    CAS  PubMed  Google Scholar 

  39. Brown, P. and Gerfen, C.R., J. Comp. Neurol., 2006, vol. 498, no. 3, pp. 415–430.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Egeland, M., Warner-Schmidt, J., Greengard, P., and Svenningsson, P., Neuropharmacology, 2011, vol. 61, no. 3, pp. 442–450.

    CAS  PubMed  Google Scholar 

  41. Patel, S., Roberts, J., Moorman, J., and Reavill, C., Neuroscience, 1995, vol. 69, no. 4, pp. 1159–1167.

    CAS  PubMed  Google Scholar 

  42. Bonsi, P., Cuomo, D., Ding, J., Sciamanna, G., Ulrich, S., Tscherter, A., Bernardi, G., Surmeier, D.J., and Pisani, A., Neuropsychopharmacology, 2007, vol. 32, no. 8, pp. 1840–1854.

    CAS  PubMed  Google Scholar 

  43. Rada, P.V., Mark, G.P., and Hoebel, B.G., Brain Res., 1993, vol. 619, nos. 1–2, pp. 98–104.

    CAS  PubMed  Google Scholar 

  44. Marcos, B., Gil-Bea, F.J., Hirst, W.D., García-Alloza, M., and Ramirez, M.J., Eur. J. Neurosci., 2006, vol. 24, no. 5, pp. 1299–1306.

    PubMed  Google Scholar 

  45. Smith, Y., Bevan, M.D., Shink, E., and Bolam, J.P., Neurosci., 1998, vol. 86, no. 2, pp. 353–387.

    CAS  Google Scholar 

  46. Sil’kis, I.G., Ros. Fiziol. Zhurn. im. I.M. Sechenova, 2000, vol. 86, no. 5, pp. 519–531.

    Google Scholar 

  47. Silkis, I., Biosystems, 2000, vol. 57, no. 3, pp. 187–196.

    CAS  PubMed  Google Scholar 

  48. Sil’kis, I.G., Neurosci. Behav. Physiol., 2003, vol. 33, no. 6, pp. 529–541.

    PubMed  Google Scholar 

  49. Cook, D.F. and Wirtshafter, D., Eur. J. Pharmacol., 1998, vol. 349, no. 1, pp. 41–47.

    CAS  PubMed  Google Scholar 

  50. Compan, V., Salin, P., and Daszuta, A., Mol. Brain Res, 1997, vol. 50, nos. 1–2, pp. 246–256.

    CAS  PubMed  Google Scholar 

  51. Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M., Nature, 2013, vol. 494, no. 7436, pp. 238–242.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ohno, Y., Imaki, J., Mae, Y., Takahashi, T., and Tatara, A., Neuropharmacology, 2011, vol. 60, nos. 2–3, pp. 201–208.

    CAS  PubMed  Google Scholar 

  53. Imperato, A., Obinu, M.C., and Gessa, G.L., J. Neural. Transm., 1995, vol. 45, pp. 91–102.

    CAS  Google Scholar 

  54. Campbell, B.M., Gresch, P.J., and Walker, P.D., Neuroscience, 2001, vol. 105, no. 3, pp. 671–680.

    CAS  PubMed  Google Scholar 

  55. Gresch, P.J. and Walker, P.D., Mol. Brain Res., 1999, vol. 70, no. 1, pp. 125–134.

    CAS  PubMed  Google Scholar 

  56. Riahi, G., Morissette, M., Parent, M., and Di Paolo, T., Eur. J. Neurosci., 2011, vol. 33, no. 10, pp. 1823–1831.

    PubMed  Google Scholar 

  57. Newman-Tancredi, A., Cussac, D., Quentric, Y., Touzard, M., Verriele, L., Carpentier, N., and Millan, M.J., J. Pharmacol. Exp. Ther., 2002, vol. 303, no. 2, pp. 815–822.

    CAS  PubMed  Google Scholar 

  58. Ferguson, M.C., Nayyar, T., Deutch, A.Y., and Ansah, T.A., Neuropharmacology, 2010, vol. 59, nos. 1–2, pp. 31–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ansah, T.A., Ferguson, M.C., and Nayyar, T., Front. Syst. Neurosci., 2011, vol. 5, article 48.

  60. Creed-Carson, M., Oraha, A., and Nobrega, J.N., Behav. Brain Res., 2011, vol. 219, no. 2, pp. 273–279.

    CAS  PubMed  Google Scholar 

  61. Navailles, S., Lagière, M., Roumegous, A., Polito, M., Boujema, M.B., Cador, M., Dunlop, J., Chesselet, M.F., Millan, M.J., and De Deurwaerdere, P., Int. J. Neuropsychopharmacol., 2013, vol. 16, no. 3, pp. 593–606.

    CAS  PubMed  Google Scholar 

  62. Mohajjel Nayebi, A.A. and Sheidaei, H., Daru, 2010, vol. 18, no. 1, pp. 41–45.

    CAS  Google Scholar 

  63. Shimizu, S., Mizuguchi, Y., Tatara, A., Kizu, T., Andatsu, S., Sobue, A., Fujiwara, M., Morimoto, T., and Ohno, Y., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, vol. 46, pp. 86–91.

    CAS  PubMed  Google Scholar 

  64. Bantick, R.A., De Vries, M.H., and Grasby, P.M., Synapse, 2005, vol. 57, no. 2, pp. 67–75.

    CAS  PubMed  Google Scholar 

  65. Tatara, A., Shimizu, S., Shin, N., Sato, M., Sugiuchi, T., Imaki, J., and Ohno, Y., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, vol. 38, no. 2, pp. 252–259.

    CAS  PubMed  Google Scholar 

  66. Wadenberg, M.L., Neurosci. Biobehav. Rev., 1996, vol. 20, no. 2, pp. 325–339.

    CAS  PubMed  Google Scholar 

  67. Nakazawa, S., Yokoyama, C., Nishimura, N., Horisawa, T., Kawasaki, A., Mizuma, H., Doi, H., and Onoe, H., Psychopharmacology (Berl.), 2013, vol. 225, no. 2, pp. 329–339.

    CAS  Google Scholar 

  68. Newman-Tancredi, A. and Kleven, M.S., Psychopharmacology (Berl.), 2011, vol. 216, no. 4, pp. 451–473.

    CAS  Google Scholar 

  69. Batool, F., Hasnat, A., Haleem, M.A., and Haleem, D.J., Acta Pharm., 2010, vol. 60, no. 2, pp. 129–140.

    CAS  PubMed  Google Scholar 

  70. Fox, S.H., Visanji, N., Reyes, G., Huot, P., Gomez-Ramirez, J., Johnston, T., and Brotchie, J.M., Can. J. Neurol. Sci., 2010, vol. 37, pp. 86–95.

    PubMed  Google Scholar 

  71. Visanji, N.P., Gomez-Ramirez, J., Johnston, T.H., Pires, D., Voon, V., Brotchie, J.M., and Fox, S.H., Mov. Disord., 2006, vol. 21, pp. 1879–1891.

    PubMed  Google Scholar 

  72. Bymaster, F.P., Calligaro, D.O., Falcone, J.F., Marsh, R.D., Moore, N.A., Tye, N.C., Seeman, P., and Wong, D.T., Neuropsychopharmacology, 1996, vol. 14, pp. 87–96.

    CAS  PubMed  Google Scholar 

  73. Richelson, E. and Souder, T., Life Sci., 2000, vol. 68, pp. 29–39.

    CAS  PubMed  Google Scholar 

  74. Ishibashi, T., Horisawa, T., Tokuda, K., Ishiyama, T., Ogasa, M., Tagashira, R., Matsumoto, K., Nishikawa, H., Ueda, Y., Toma, S., Oki, H., Tanno, N., Saji, I., Ito, A., Ohno, Y., and Nakamura, M., J. Pharmacol. Exp. Ther., 2010, vol. 334, no. 1, pp. 171–181.

    CAS  PubMed  Google Scholar 

  75. Xia, Y., Driscoll, J.R., Wilbrecht, L., Margolis, E.B., Fields, H.L., and Hjelmstad, G.O., J. Neurosci., 2011, vol. 31, no. 21, pp. 7811–7816.

    CAS  PubMed  Google Scholar 

  76. Chuhma, N.I., Tanaka, K.F., Hen, R., and Rayport, S., J. Neurosci., 2011, vol. 31, no. 4, pp. 1183–1192.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Tronci, E., Lisci, C., Stancampiano, R., Fidalgo, C., Collu, M., Devoto, P., and Carta, M., Neurobiol. D., 2013, vol. 60, pp. 108–114.

    CAS  Google Scholar 

  78. Bishop, C., George, J.A., Buchta, W., Goldenberg, A.A., Mohamed, M., Dickinson, S.O., Eissa, S., and Eskow Jaunarajs, K.L., Eur. J. Neurosci., 2012, vol. 36, no. 6, pp. 2839–2848.

    PubMed Central  PubMed  Google Scholar 

  79. Conti, M.M., Ostock, C.Y., Lindenbach, D., Goldenberg, A.A., Kampton, E., Dell’isola, R., Katzman, A.C., and Bishop, C., Neuropharmacology, 2014, vol. 77, pp. 1–8.

    CAS  PubMed  Google Scholar 

  80. Inden, M., Abe, M., Minamino, H., Takata, K., Yoshimoto, K., Tooyama, I., and Kitamura, Y., J. Pharmacol. Sci., 2012, vol. 119, no. 1, pp. 10–19.

    CAS  PubMed  Google Scholar 

  81. Eskow, K.L., Dupre, K.B., Barnum, C.J., Dickinson, S.O., Park, J.Y., and Bishop, C., Synapse, 2009, vol. 63, pp. 610–620.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Bhide, N., Lindenbach, D., Surrena, M.A., Goldenberg, A.A., Bishop, C., Berger, S.P., and Paquette, M.A., Psychopharmacology. (Berl.), 2013, vol. 227, no. 3, pp. 533–544.

    CAS  Google Scholar 

  83. Strecker, K., Adamaszek, M., Ohm, S., Wegner, F., Beck, J., and Schwarz, J., J. Neural. Transm., 2012, vol. 119, no. 11, pp. 1351–1359.

    CAS  PubMed  Google Scholar 

  84. Jackson, M.J., Al-Barghouthy, G., Pearce, R.K., Smith, L., Hagan, J.J., and Jenner, P., Pharmacol. Biochem. Behav., 2004, vol. 79, no. 3, pp. 391–400.

    CAS  PubMed  Google Scholar 

  85. Riahi, G., Morissette, M., Samadi, P., Parent, M., and Di Paolo, T., Biochem. Pharmacol., 2013, vol. 86, no. 7, pp. 970–978.

    CAS  PubMed  Google Scholar 

  86. Bezard, E., Munoz, A., Tronci, E., Pioli, E.Y., Li, Q., Porras, G., Bjorklund, A., and Carta, M., Neurosci. Res., 2013, vol. 77, no. 4, pp. 242–246.

    CAS  PubMed  Google Scholar 

  87. Munoz, A., Li, Q., Gardoni, F., Marcello, E., Qin, C., Carlsson, T., Kirik, D., Di Luca, M., Björklund, A., Bezard, E., and Carta, M., Brain, 2008, vol. 131, pp. 3380–3394.

    PubMed  Google Scholar 

  88. Iderberg, H., Rylander, D., Bimpisidis, Z., and Cenci, M.A., Exp. Neurol., 2013, vol. 250, pp. 116–124.

    CAS  PubMed  Google Scholar 

  89. Smith, G.A., Breger, L.S., Lane, E.L., and Dunnett, S.B., Neuropharmacology, 2012, vol. 63, no. 5, pp. 818–828.

    CAS  PubMed  Google Scholar 

  90. Bishop, C., Daut, G.S., and Walker, P.D., Neuropharmacology, 2005, vol. 49, no. 3, pp. 350–358.

    CAS  PubMed  Google Scholar 

  91. Li, L., Qiu, G., Ding, S., and Zhou, F.M., Brain Res., 2013, vol. 1491, pp. 236–250.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Fox, S.H., Drugs, 2013, vol. 73, no. 13, pp. 1405–1415.

    CAS  PubMed  Google Scholar 

  93. Lundblad, M., Andersson, M., Winkler, C., Kirik, D., Wierup, N., and Cenci, M.A., Eur. J. Neurosci., 2002, vol. 15, pp. 120–132.

    CAS  PubMed  Google Scholar 

  94. Iravani, M.M., Tayarani-Binazir, K., Chu, W.B., Jackson, M.J., and Jenner, P., J. Pharmacol. Exp. Ther., 2006, vol. 319, no. 3, pp. 1225–1234.

    CAS  PubMed  Google Scholar 

  95. Zhang, H., Ye, N., Zhou, S., Guo, L., Zheng, L., Liu, Z., Gao, B., Zhen, X., and Zhang, A., J. Med. Chem., 2011, vol. 54, no. 13, pp. 4324–4338.

    CAS  PubMed  Google Scholar 

  96. Huot, P., Fox, S.H., Newman-Tancredi, A., and Brotchie, J.M., J. Pharmacol. Exp. Ther., 2011, vol. 339, no. 1, pp. 2–8.

    CAS  PubMed  Google Scholar 

  97. Dupre, K.B., Ostock, C.Y., George, J.A., Eskow Jaunarajs, K.L., Hueston, C.M., and Bishop, C., ACS Chem. Neurosci., 2013, vol. 4, no. 5, pp. 747–760.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Doig, N.M., Moss, J., and Bolam, J.P., J. Neurosci., 2010, vol. 30, no. 44, pp. 14610–14618.

    CAS  PubMed  Google Scholar 

  99. Dupre, K.B. and Ostock, C.Y., Eskow Jaunarajs, K.L., Button, T., Savage, L.M, Wolf, W., and Bishop, C., Exp. Neurol., 2011, vol. 229, no. 2, pp. 288–299.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Porras, G., De Deurwaerdère, P., Moison, D., and Spampinato, U., Eur. J. Neurosci., 2003, vol. 17, no. 4, pp. 771–781.

    PubMed  Google Scholar 

  101. Di Matteo, V., Di Giovanni, G., Pierucci, M., and Esposito, E., Prog. Brain Res., 2008, vol. 172, pp. 7–44.

    PubMed  Google Scholar 

  102. Ichikawa, J. and Meltzer, H.Y., Brain Res., 2000, vol. 858, no. 2, pp. 252–263.

    CAS  PubMed  Google Scholar 

  103. Nayebi, A.M., Rad, S.R., Saberian, M., Azimzadeh, S., and Samini, M., Pharmacol. Rep., 2010, vol. 62, no. 2, pp. 258–264.

    CAS  PubMed  Google Scholar 

  104. Mahmoudi, J., Nayebi, A.M., Samini, M., Reyhani-Rad, S., and Babapour, V., Pharmacol. Rep., 2011, vol. 63, no. 4, pp. 908–914.

    CAS  PubMed  Google Scholar 

  105. Blomeley, C.P. and Bracci, E., Eur. J. Neurosci., 2009, vol. 29, no. 8, pp. 1604–1614.

    PubMed Central  PubMed  Google Scholar 

  106. Di Matteo, V., Pierucci, M., Esposito, E., Crescimanno, G., Benigno, A., and Di Giovanni, G., Prog. Brain Res., 2008, vol. 172, pp. 423–463.

    PubMed  Google Scholar 

  107. Parent, M., Wallman, M.J., Gagnon, D., and Parent, A., J. Chem. Neuroanat., 2011, vol. 41, no. 4, pp. 256–265.

    CAS  PubMed  Google Scholar 

  108. Wallman, M.J., Gagnon, D., and Parent, M., Eur. J. Neurosci., 2011, vol. 33, no. 8, pp. 1519–1532.

    PubMed  Google Scholar 

  109. Sil’kis, I.G., Usp. Fiziol. Nauk, 2005, vol. 36, no. 2, pp. 66–83.

    PubMed  Google Scholar 

  110. Querejeta, E., Oviedo-Chávez, A., Araujo-Alvarez, J.M., Quinones-Cárdenas, A.R., and Delgado, A., Brain Res., 2005, vol. 1043, nos. 1–2, pp. 186–194.

    CAS  PubMed  Google Scholar 

  111. Sil’kis, I.G., Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2005, vol. 55, no. 5, pp. 592–607.

    Google Scholar 

  112. Marek, G.J. and Aghajanian, G., K, Neuroscience, 1998, vol. 86, no. 2, pp. 485–497.

    CAS  PubMed  Google Scholar 

  113. McOmish, C.E., Lira, A., Hanks, J.B., and Gingrich, J.A., Neuropsychopharmacology, 2012, vol. 37, no. 13, pp. 2747–2755.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Ostock, C.Y., Dupre, K.B., Jaunarajs, K.L., Walters, H., George, J., Krolewski, D., Walker, P.D., and Bishop, C., Neuropharmacology, 2011, vol. 61, no. 4, pp. 753–760.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Ballanger, B., Strafella, A.P., van Eimeren, T., Zurowski, M., Rusjan, P.M., Houle, S., and Fox, S.H., Arch. Neurol., 2010, vol. 67, no. 4, pp. 416–421.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Silkis.

Additional information

Original Russian Text © I.G. Silkis, 2014, published in Neirokhimiya, 2014, Vol. 31, No. 3, pp. 185–199.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silkis, I.G. Mutual influence of serotonin and dopamine on the functioning of the dorsal striatum and motor activity (hypothetical mechanism). Neurochem. J. 8, 149–161 (2014). https://doi.org/10.1134/S1819712414030118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712414030118

Keywords

Navigation