Skip to main content
Log in

The role of opioid receptor agonists and antagonists in the treatment of Parkinson’s disease

  • Theoretical Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

A possible mechanism underlying the role of opioids in the treatment of Parkinson’s disease and L-dopa-induced dyskinesias is suggested. This role is based on the reorganization of neuronal firing in the motor cortico-basal ganglia-thalamocortical loop as a consequence of opioid-mediated LTD induction in the spiny cells of the input basal ganglia nucleus, striatum. Analysis of existing data allowed us to propose that the striatonigral cells in the striosomes and matrix that release dynorphin mainly express μ and κ opioid receptors, respectively, whereas striatopallidal cells that release enkephalin express δ opioid receptors. The proposed mechanism implies that in addition to agonists of dopamine receptors and antagonists of muscarinic receptors, μ and δ receptor agonists and/or κ receptor antagonists might alleviate the symptoms of Parkinson’s disease and allow recovery of locomotor activity. Recurrent collaterals of striatal spiny cells innervating their dendrites and bodies, as well as those of striatal cholinergic interneurons, form negative feedback loops that allow opioid peptides and substance P to regulate and stabilize striatal output pathways. Therefore, in the absence of activation of the D2 and D1 receptors on striatal spiny cells, increased enkephalin concentration and decreased dynorphin and substance P level promote the suppression of acetylcholine release (due to modulation of cholinergic interneuron firing through κ opioid and NK receptors), thus reducing the impact of a dopamine deficit on basal ganglia functioning. Opposing changes in opioid concentrations, due to L-dopa treatment and reorganization of activity in the same neuronal loops, may reduce dyskinesias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BG:

basal ganglia

LID:

L-dopa-induced dyskinesias

LTD:

long-term depression

LTP:

long-term potentiation

SNr:

substantia nigra pars reticulata

GPe and GPi:

external and internal parts of the globus pallidus

References

  1. Henry, B., Duty, S., Fox, S.H., et al., Exp. Neurol., 2003, vol. 183, no. 2, pp. 458–468.

    Article  PubMed  CAS  Google Scholar 

  2. Hjelmstad, G.O. and Fields, H.L., J. Neurophysiol., 2001, vol. 85, no. 3, pp. 1153–1158.

    PubMed  CAS  Google Scholar 

  3. Unterwald, E.M. and Cuntapay, M., Neuropharmacology, 2000, vol. 39, no. 3, pp. 372–381.

    Article  PubMed  CAS  Google Scholar 

  4. Hill, M.P., Hille, C.J., and Brotchie, J.M., Drug News Perspect., 2000, vol. 13, no. 5, pp. 261–268.

    PubMed  CAS  Google Scholar 

  5. Hille, C.J., Fox, S.H., Peggs, D., et al., Soc. Neurosci. Abstr., 1998, vol. 23, p. 142.

    Google Scholar 

  6. Hudzik, T.J., Howell, A., Payza, K., and Cross, A.J., Eur. J. Pharmacol., 2000, vol. 396, nos. 2–3, pp. 101–197.

    Article  PubMed  CAS  Google Scholar 

  7. Sil’kis, I.G., Usp. Fiziol. Nauk, 2003, vol. 34, no. 4, pp. 54–74.

    PubMed  CAS  Google Scholar 

  8. Lazarus, K.H., Bryant, S.D., Salvadori, S., et al., Trends Neurosci., 1996, vol. 19, no. 1, pp. 31–35.

    Article  PubMed  CAS  Google Scholar 

  9. Spina, L., Longoni, R., Milas, A., et al., Behav. Pharmacol., 1998, vol. 9, no. 1, pp. 1–8.

    PubMed  CAS  Google Scholar 

  10. Steiner, H. and Gerfen, C.R., Neurosci., 1999, vol. 88, no. 3, pp. 795–810.

    Article  CAS  Google Scholar 

  11. Waddell, A.B. and Holtzman, S.G., Behav. Pharmacol., 1998, vol. 9. nos. 5–6, pp. 397–407.

    Article  Google Scholar 

  12. Pinna, A. and Di Chiara, G., Behav. Pharmacol., 1998, vol. 9, no. 1, pp. 15–21.

    PubMed  CAS  Google Scholar 

  13. Di Chiara, G. and Imperato, A., Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, no. 14, pp. 5274–5278.

    Article  PubMed  Google Scholar 

  14. McDougall, S.A., Rodarte-Freeman, A.L., and Nazarian, A., Dev. Psychobiol., 1999, vol. 34, no. 3, pp. 183–193.

    Article  PubMed  CAS  Google Scholar 

  15. Acri, J.B., Thompson, A.C., and Shippenberg, T., Synapse, 2001, vol. 39, no. 4, pp. 343–350.

    Article  PubMed  CAS  Google Scholar 

  16. Gray, A.M., Rawls, S.M., Shippenberg, T.S., and McGinty, J.F., J. Neurochem., 1999, vol. 73, no. 3, pp. 1066–1074.

    Article  PubMed  CAS  Google Scholar 

  17. Yajima, Y., Narita, M., Takahashi-Nakano, Y., et al., Brain Res., 2000, vol. 862,nos. 1–2, pp. 120–126.

    Article  PubMed  CAS  Google Scholar 

  18. Kimmel, H.L., Justice, J.B., and Holtzman, S.G., Eur. J. Pharmacol., 1998, vol. 346, nos. 2–3, pp. 203–208.

    Article  PubMed  CAS  Google Scholar 

  19. Narita, M., Suzuki, T., Funada, M., et al., Life Sci., 1993a, vol. 52, no. 4, pp. 397–404.

    Article  PubMed  CAS  Google Scholar 

  20. Narita, M., Suzuki, T., Funada, M., et al., Psychopharmacology (Berl.), 1993b, vol. 111, no. 4, pp. 423–426.

    Article  CAS  Google Scholar 

  21. Pearl, S.M. and Glick, S.D., Neurosci. Lett., 1996, vol. 213, no. 1, pp. 5–8.

    Article  PubMed  CAS  Google Scholar 

  22. Tsuji, M., Takeda, H., Matsumiya, T., et al., Life Sci., 2001, vol. 68, no. 15, pp. 1717–1725.

    Article  PubMed  CAS  Google Scholar 

  23. Fox, S., Silverdale, M., Kellett, M., et al., Mov. Disord., 2004, vol. 19, no. 5. pp. 554–560.

    Article  PubMed  Google Scholar 

  24. Samadi, P., Bedard, P.J., and Rouillard, C., Trends Pharmacol. Sci., 2006, vol. 27, no. 10, pp. 512–517.

    Article  PubMed  CAS  Google Scholar 

  25. Henry, B., Fox, S.H., Crossman, A.R., and Brotchie, J.M., Exp. Neurol., 2001, vol. 171, no. 1, pp. 139–146.

    Article  PubMed  CAS  Google Scholar 

  26. Mansour, A., Khachaturian, H., Lewis, M.E., et al., Trends Neurosci., 1988, vol. 11, no. 7, pp. 308–314.

    Article  PubMed  CAS  Google Scholar 

  27. Parent, A. and Hazrati, L.N., Brain Res. Rev., 1995, vol. 20, no. 1, pp. 91–127.

    Article  PubMed  CAS  Google Scholar 

  28. Smith, Y., Bevan, M.D., Shink, E., and Bolam, J.P., Neurosci., 1998, vol. 86, no. 2, pp. 353–387.

    Article  CAS  Google Scholar 

  29. Mavridis, M. and Besson, M.J., Neurosci., 1999, vol. 92, no. 3, pp. 945–966.

    Article  CAS  Google Scholar 

  30. Aubert, I., Ghorayeb, I., Normand, E., and Bloch, B., J. Comp. Neurol., 2000, vol. 418, no. 1, pp. 22–32.

    Article  PubMed  CAS  Google Scholar 

  31. Mansour, A., Fox, C.A., Akil, H., and Watson, S.J., Trends Neurosci., 1995, vol. 18, no. 1, pp. 22–29.

    Article  PubMed  CAS  Google Scholar 

  32. Kawaguchi, Y., Neurosci. Res., 1997, vol. 27, no. 1, pp. 1–8.

    Article  PubMed  CAS  Google Scholar 

  33. Svingos, A.L., Colago, E.E., and Pickel, V.M., J. Neurosci., 1999, vol. 19, pp. 1804–1813.

    PubMed  CAS  Google Scholar 

  34. Kieffer, B.L., Cell. Mol. Neurobiol., 1995, vol. 15, no. 6, pp. 615–635.

    Article  PubMed  CAS  Google Scholar 

  35. Kato, M., Nippon-Rinsho, 1997, vol. 55, no. 1, pp. 26–31.

    PubMed  CAS  Google Scholar 

  36. Silkis, I., Biosystems, 2001, vol. 59, no. 1, pp. 7–14.

    Article  PubMed  CAS  Google Scholar 

  37. Martin, G., Ahmed, S.H., Blank, T., et al., J. Neurosci., 1999, vol. 19, no. 20, pp. 9081–9089.

    PubMed  CAS  Google Scholar 

  38. Aosaki, T. and Kawaguchi, Y., J. Neurosci., 1996, vol. 16, no. 16, pp. 5141–5153.

    PubMed  CAS  Google Scholar 

  39. Preston, Z., Lee, K., Widdowson, L., et al., Neuroscience, 2000, vol. 95, no. 2, pp. 367–376.

    Article  PubMed  CAS  Google Scholar 

  40. Schoffelmeer, A.N., Rice, K.C., Jacobson, A.E., et al., Eur. J. Pharmacol., 1988, vol. 154, no. 2, pp. 169–178.

    Article  PubMed  CAS  Google Scholar 

  41. Herrero, M.T., Augood, S.J., Hirsch, E.C., et al., Neurosci., 1995, vol. 68, no. 4, pp. 1189–1198.

    Article  CAS  Google Scholar 

  42. Steiner, H. and Gerfen, C.R., J. Comp. Neurol., 1996, vol. 376, no. 4, pp. 530–541.

    Article  PubMed  CAS  Google Scholar 

  43. Steiner, H. and Gerfen, C.R., Exp. Brain Res., 1998, vol. 123, nos. 1, 2, pp. 60–76.

    Article  PubMed  CAS  Google Scholar 

  44. Engber, T.M., Boldry, R.C., and Chase, T.N., Eur. J. Pharmacol., 1991, vol. 200, no. 1, pp. 171–173.

    Article  PubMed  CAS  Google Scholar 

  45. Hallett, P.J. and Brotchie, J.M., Mov. Disord., 2007, vol. 22, no. 1, pp. 28–40.

    Article  PubMed  Google Scholar 

  46. Klintenberg, R., Svenningsson, P., Gunne, L., and Andren, P.E., J. Neural. Transm., 2002, vol. 109, no. 10, pp. 1295–1307.

    Article  PubMed  CAS  Google Scholar 

  47. Johansson, P.A., Andersson, M., Andersson, K.E., and Cenci, M.A., Neurobiol. Dis., 2001, vol, 8, no. 2, pp. 220–239.

    Article  PubMed  CAS  Google Scholar 

  48. Chen, L., Togasaki, D.M., Langston, J.W., et al., Neurosci., 2005, vol. 132, no. 2, pp. 409–420.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Silkis.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silkis, I.G. The role of opioid receptor agonists and antagonists in the treatment of Parkinson’s disease. Neurochem. J. 1, 281–287 (2007). https://doi.org/10.1134/S1819712407040034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712407040034

Key words

Navigation