Skip to main content
Log in

Simulated Microgravity Changes the Number of Mechanically Gated and Mechanosensitive Ion Channels Genes Transcripts in Rat Ventricular Cardiomyocytes

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The mechanoelectrical feedback in the heart is based on the work of mechanically gated (MGCs) and mechanosensitive (MSCs) channels. Since microgravity alters the heart’s morphological and physiological properties, we hypothesized that the expression of both MGCs and MSCs would be affected. We employed RNA transcriptome sequencing to investigate changes in the gene transcript levels of MGCs and MSCs in isolated rat ventricular cardiomyocytes under control conditions and in a simulated microgravity environment. For the first time, our findings demonstrated that simulated microgravity induces alterations in the gene transcript levels of specific MGCs, such as TRPM7, TRPV2, TRPP1, TRPP2, Piezo1, TMEM63A, TMEM36B, and known MSCs, including K2P2.1, K2P3.1, Kir6.1, Kir6.2, NaV1.5, CaV1.2, KV7.1. However, other voltage-gated channels and channels lacking a voltage sensor remained unaffected. These findings suggest that the altered expression of MGCs and MSCs could lead to changes in the net currents across the membrane, ultimately impacting the heart’s function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Ravens, U., Prog. Biophys. Mol. Biol., 2003, vol. 82, nos. 1–3, pp. 255–266.

    Article  PubMed  Google Scholar 

  2. Craelius, W., Chen, V., and El-Sherif, N., Biosci. Rep., 1988, vol. 8, no. 5, pp. 407–414.

    Article  CAS  PubMed  Google Scholar 

  3. Kamkin, A., Kiseleva, I., Wagner, K.D., et al., J. Mol. Cell. Cardiol., 2000, vol. 32, no. 3, pp. 465–477.

    Article  CAS  PubMed  Google Scholar 

  4. Kiseleva, I., Kamkin, A., Wagner, K.D., et al., Cardiovasc. Res., 2000, vol. 45, no. 2, pp. 370–378.

    Article  CAS  PubMed  Google Scholar 

  5. Kamkin, A., Kiseleva, I., and Isenberg, G., Cardiovasc. Res., 2000, vol. 48, no. 3, pp. 409–420.

    Article  CAS  PubMed  Google Scholar 

  6. Kamkin, A., Kiseleva, I., and Isenberg, G., Pflugers Arch., 2003, vol. 446, no. 2, pp. 220–231.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y.H., Youm, J.B., Sung, H.K., et al., J. Physiol., 2000, vol. 523, no. 3, pp. 607–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamkin, A., Kiseleva, I., Wagner, K.D., et al., Pflugers Arch., vol. 446, no. 3, pp. 339–346.

  9. Liu, C., Zhong, G., Zhou, Y., et al., Cell Prolif., 2020, vol. 53, no. 3, p. e12783.

    Article  PubMed  PubMed Central  Google Scholar 

  10. White, R.J. and Blomqvist, C.G., J. Appl. Physiol., 1998, vol. 85, no. 2, pp. 738–746.

    Article  CAS  PubMed  Google Scholar 

  11. Herault, S., Fomina, G., Alferova, I., et al., Eur. J. Appl. Physiol., 2000, vol. 81, no. 5, pp. 384–390.

    Article  CAS  PubMed  Google Scholar 

  12. Goldstein, M.A., Edwards, R.J., and Schroeter, J.P., J. Appl. Physiol., 1992, vol. 73, no. 2, pp. 94S-100S.

    Article  CAS  PubMed  Google Scholar 

  13. Kashihara, H., Haruna, Y., Suzuki, Y., Kawakubo, K., et al., Acta Physiol. Scand. (Suppl.), 1994, vol. 616, pp. 19–26.

    CAS  PubMed  Google Scholar 

  14. Zhong, G., Li, Y., Li, H., et al., Front. Physiol., 2016, vol. 7, p. 274.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kamkin, A.G., Kamkina, O.V., Shim, A.L., et al., Physiol. Rep., 2022, vol. 10, no. 7, p. e15246.

    Article  Google Scholar 

  16. Hanaoka, K., Qian, F., Boletta, A., et al., Nature, 2000, vol. 408, no. 6815, pp. 990–994.

    Article  CAS  PubMed  Google Scholar 

  17. Delmas, P., Nauli, S.M., Li, X., et al., FASEB J., 2004, vol. 18, no. 6, pp. 740–742.

    Article  CAS  PubMed  Google Scholar 

  18. Yan, H., Helman, G., Murthy, S.E., et al., Am. J. Hum. Genet., 2019, vol. 105, no. 5, pp. 996–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, D., Xu, L., Cai, W.M., et al., J. Biol. Chem., 2023, vol. 299, no. 1, p. 102781.

    Article  CAS  PubMed  Google Scholar 

  20. Marques, M.C., Albuquerque, I.S., Vaz, S.H., et al., Biochemistry, 2019, vol. 58, no. 26, pp. 2861–2866.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was financed within the framework of the State task of the Ministry of Health of the Russian Federation for 2021–2023, no. 121052800049-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kamkin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest. Statement on the welfare of animals. The studies were approved by the ethics committee of the Federal State Autonomous Educational Institution of Higher Education of the Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation. Protocol no. 14/2023, extract dated May 24, 2023.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamkin, A.G., Mitrokhin, V.M., Kamkina, O.V. et al. Simulated Microgravity Changes the Number of Mechanically Gated and Mechanosensitive Ion Channels Genes Transcripts in Rat Ventricular Cardiomyocytes. Dokl Biochem Biophys 512, 251–255 (2023). https://doi.org/10.1134/S1607672923700369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672923700369

Keywords:

Navigation