Skip to main content
Log in

Synthesis and Properties of Sulfonated Copolymers of Oxadiazole, Dioxophenoxathiine, and Diphenyl Oxide

  • POLYMER GELS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Sulfonated copolymers of 1,3,4-oxadiazole, diphenyl oxide, and 10,10-dioxophenoxathiine are obtained for use as polymer superabsorbents. The one-pot synthesis of the copolymers is carried out in an oleum medium, with the starting reagents being 4,4'-oxydibenzoic acid and hydrazine sulfate. As a result, the copolymers are obtained with the same proportion of the oxadiazole fragment in the chain but different ratio of fragments containing sulfonic acid groups: diphenyl oxide fragments with two sulfonic acid groups and dioxophenoxathiine fragments with one sulfonic acid group and one sulfonyl group. The copolymers are capable of a 100-fold swelling in an aqueous medium and dissolving to a limited extent upon the addition of polar aprotic cosolvents or with an increase in pH. The ratio of sulfonic acid and sulfonyl groups in the composition of the copolymer influences its swelling in water and the viscoelasticity of hydrogels that are in the mesophase state in case of a high content of the copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. T. La, and J. H. Lee, Prog. Polym. Sci. 36, 813 (2011).

    Article  CAS  Google Scholar 

  2. H. Gao and K. Lian, RSC Adv. 4, 33091 (2014).

  3. M. S. Kamal, A. S. Sultan, U. A. Al-Mubaiyedh, and I. A. Hussein, Polym. Rev. 55, 491 (2015).

    Article  CAS  Google Scholar 

  4. T. L. Staple and P. K. Chatterjee, “Synthetic Superabsorbents,” in Absorbent Technology, Ed. by P. K. Chatterjee and B. S. Gupta (Elsevier Science B. V., Amsterdam, 2002), p. 283.

    Google Scholar 

  5. H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, and Z. Liu, J. Power Sources 178, 103 (2008).

    Article  CAS  Google Scholar 

  6. R. Dhodapkar, N. N. Rao, S. P. Pande, T. Nandy, and S. Devotta, React. Funct. Polym. 67, 540 (2007).

    Article  CAS  Google Scholar 

  7. R. Sivashankar, A. B. Sathya, K. Vasantharaj, and V. Sivasubramanian, Environ. Nanotechnol., Monit. Manage. 1, 36 (2014).

    Google Scholar 

  8. X. S. Hu, R. Liang, and G. Sun, J. Mater. Chem. A 6, 17612 (2018).

    Article  CAS  Google Scholar 

  9. D. Chen, L. Wang, Y. Ma, and W. Yang, NPG Asia Mater. 8, 301 (2016).

    Article  Google Scholar 

  10. X. Wang, S. Lu, L. Chen, J. Li, S. Dai, and X. Wang, J. Radioanal. Nucl. Chem. 306, 497 (2015).

    Article  CAS  Google Scholar 

  11. G. Zhao, H. Zhang, Q. Fan, X. Ren, J. Li, Y. Chen, and X. Wang, J. Hazard. Mater. 173, 661 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. D. Shao, G. Hou, J. Li, T. Wen, X. Ren, and X. Wang, Chem. Eng. J. 255, 604 (2014).

    Article  CAS  Google Scholar 

  13. B. Hayati, A. Maleki, F. Najafi, H. Daraei, F. Gharibi, and G. McKay, J. Mol. Liq. 224, 1032 (2016).

    Article  CAS  Google Scholar 

  14. D. C. Manatunga, R. M. de Silva, K. N. de Silva, and R. Ratnaweera, RSC Adv. 6, 105618 (2016).

  15. K. V. Rao, S. Mohapatra, T. K. Maji, and S. J. George, Chem.-Eur. J. 18, 4505 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. T. Ono, T. Sugimoto, S. Shinkai, and K. Sada, Nat. Mater. 6, 429 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. H. X. Jin, B. Dong, B. Wu, and M. H. Zhou, Polym.- Plast. Technol. Eng. 51, 154 (2012).

    Article  CAS  Google Scholar 

  18. M. J. Zohuriaan-Mehr and K. Kabiri, Iran. Polym. J. 17, 451 (2008).

    CAS  Google Scholar 

  19. K. Kabiri, H. Omidian, M. J. Zohuriaan-Mehr, and S. Doroudiani, Polym. Compos. 32, 277 (2011).

    Article  CAS  Google Scholar 

  20. A. Sannino, A. Esposito, A. D. Rosa, A. Cozzolino, L. Ambrosio, and L. Nicolais, J. Biomed. Mater. Res., Part A 67, 1016 (2003).

    CAS  Google Scholar 

  21. S. O. Ilyin, V. G. Kulichikhin, and A. Y. Malkin, Rheol. Acta 55, 223 (2016).

    Article  CAS  Google Scholar 

  22. M. Abdulbaki, C. Huh, K. Sepehrnoori, M. Delshad, A. Varavei, J. Pet. Sci. Eng. 122, 741 (2014).

    CAS  Google Scholar 

  23. M. J. Zohuriaan-Mehr, H. Omidian, S. Doroudiani, and K. Kabiri, J. Mater. Sci. 45, 5711 (2010).

    Article  CAS  Google Scholar 

  24. M. Rikukawa and K. Sanui, Prog. Polym. Sci. 25, 1463 (2000).

    Article  CAS  Google Scholar 

  25. J. Roziere and D. J. Jones, Annu. Rev. Mater. Res. 33, 503 (2003).

    Article  CAS  Google Scholar 

  26. V. V. Korshak and S. V. Vinogradov, Russ. Chem. Rev. 37, 885 (1968).

    Article  Google Scholar 

  27. S. Janietz and B. Schulz, Eur. Polym. J. 32, 465 (1996).

    Article  CAS  Google Scholar 

  28. V. S. Yashchenko, A. A. Pap, Y. V. Matveenko, and V. K. Ol’khovik, Polym. Sci., Ser. B 58, 529 (2016).

    Article  CAS  Google Scholar 

  29. D. F. Bairamov, A. E. Chalykh, M. M. Feldstein, R. A. Siegel, N. A. Platé, J. Appl. Polym. Sci. 85, 1128 (2002).

    Article  CAS  Google Scholar 

  30. A. Mráček, Int. J. Mol. Sci. 11, 532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. F. Bayramov, P. Singh, G. W. Cleary, R. A. Siegel, A. E. Chalykh, and M. M. Feldstein, Polym. Int. 57, 785 (2008).

    Article  CAS  Google Scholar 

  32. S. O. Ilyin, V. V. Makarova, T. S. Anokhina, V. Y. Ignatenko, T. V. Brantseva, A. V. Volkov, and S. V. Antonov, Cellulose 25, 2515 (2018).

    Article  CAS  Google Scholar 

  33. A. Malkin, A. Askadsky, A. Chalykh, and V. Kovriga, Experimental Methods of Polymer Physics (Mir, Moscow, 1983).

  34. V. Makarova and V. Kulichikhin, in Interferometry. Research and Applications in Science and Technology, Ed. by I. Padron (InTech, Rijeka, 2012), p. 395.

    Google Scholar 

  35. H. Hatakeyama and T. Hatakeyama, Thermochim. Acta 308, 3 (1998).

    Article  CAS  Google Scholar 

  36. A. Mráček, K. Benešová, A. Minařík, P. Urban, and L. Lapčik, J. Biomed. Mater. Res., Part A 83, 184 (2007).

    Google Scholar 

  37. K. Kabiri, H. Omidian, S. A. Hashemi, and M. J. Zohuriaan-Mehr, Eur. Polym. J. 39, 1341 (2003).

    Article  CAS  Google Scholar 

  38. O. E. Philippova, Polym. Sci., Ser. C 42, 208 (2000).

    Google Scholar 

  39. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer 39, 6697 (1998).

    Article  CAS  Google Scholar 

  40. P. A. Shabadrov and A. P. Safronov, Polym. Sci., Ser. A 60, 628 (2018).

    Article  CAS  Google Scholar 

  41. S. Zhang, H. Chen, S. Liu, and J. Guo, Energy Fuels 31, 1825 (2017).

    Article  CAS  Google Scholar 

  42. E. Karadağ, Ö. B. Üzüm, and D. Saraydin, Eur. Polym. J. 38, 2133 (2002).

    Article  Google Scholar 

  43. O. E. Philippova, Y. D. Zaroslov, A. R. Khokhlov, and G. Wegner, Macromol. Symp. 200, 45 (2003).

    Article  CAS  Google Scholar 

  44. L. Xu, X. Li, M. Zhai, L. Huang, J. Peng, J. Li, and G. Wei, J. Phys. Chem. B 111, 3391 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. J. Valencia and I. F. Pierola, Eur. Polym. J. 37, 2345 (2001).

    Article  CAS  Google Scholar 

  46. R. S. D. Toteja, B. L. Jangida, M. Sundaresan, and B. Venkataramani, Langmuir 13, 2980 (1997).

    Article  CAS  Google Scholar 

  47. H. E. Van Wart and G. E. Janauer, J. Phys. Chem. 78, 411 (1974).

    Article  CAS  Google Scholar 

  48. C. S. Miner and N. N. Dalton, Glycerol (Reinhold Publ. Corp., New York, 1953).

    Google Scholar 

  49. R. G. LeBel and D. A. I. Goring, J. Chem. Eng. Data 7, 100 (1962).

    Article  CAS  Google Scholar 

  50. J. Y. Kim, J. Y. Song, E. J. Lee, and S. K. Park, Colloid Polym. Sci. 281, 614 (2003).

    Article  CAS  Google Scholar 

  51. C. P. Kelly, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 110, 16066 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. J. P. Guthrie, Can. J. Chem. 56, 2342 (1978).

    Article  CAS  Google Scholar 

  53. A. Malkin, S. Ilyin, T. Roumyantseva, and V. Kulichikhin, Macromolecules 46, 257 (2013).

    Article  CAS  Google Scholar 

  54. S. O. Ilyin, V. G. Kulichikhin, and A. Y. Malkin, Polym. Sci., Ser. A 55, 503 (2013).

    Article  CAS  Google Scholar 

  55. V. G. Kulichikhin, S. O. Ilyin, M. V. Mironova, A. K. Berkovich, I. E. Nifantyev,and A. Ya. Malkin, Adv. Polym. Technol. 37, 1076 (2018).

    Article  CAS  Google Scholar 

  56. S. O. Ilyin, A. Y. Malkin, V. G. Kulichikhin, Y. I. Denisova, L. B. Krentsel, G. A. Shandryuk, A. D. Litmanovich, E. A. Litmanovich, G. N. Bondarenko, and Y. V. Kudryavtsev, Macromolecules 47, 4790 (2014).

    Article  CAS  Google Scholar 

  57. A. Malkin, V. Kulichikhin, and S. Ilyin, Rheol. Acta 56, 177 (2017).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 17-53-04002 Bel_mol_a) and the Belarusian Republican Foundation for Fundamental Research (project no. X17PM-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Ilyin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadikova, A.E., Yashchenko, V.S., Makarova, V.V. et al. Synthesis and Properties of Sulfonated Copolymers of Oxadiazole, Dioxophenoxathiine, and Diphenyl Oxide. Polym. Sci. Ser. B 62, 47–60 (2020). https://doi.org/10.1134/S156009042001011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156009042001011X

Navigation