Skip to main content
Log in

Zitterbewegung of Bosons

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Zitterbewegung of massive and massless scalar bosons and a massive Proca (spin-1) boson is analyzed. The equations describing the evolution of the velocity and position of the scalar boson in the generalized Feshbach–Villars representation and the corresponding equations for the massive Proca particle in the Sakata–Taketani representation are equivalent to each other and to the well-known equations for the Dirac particle. However, Zitterbewegung does not appear in the Foldy–Wouthuysen representation. Since the position and velocity operators in the Foldy–Wouthuysen representation and their transforms to other representations are the quantum-mechanical counterparts of the corresponding classical variables, Zitterbewegung is not observable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Schrödinger, “Über die kräftefreie Bewegung in der relativistischen Quantenmechanik,” Berlin Ber., 418 (1930); “Zur Quantendynamik des Elektrons,” Berlin Ber., 63 (1931).

  2. R. F. Guertin and E. Guth, “Zitterbewegung in relativistic spin-0 and -1/2 hamiltonian theories,” Phys. Rev. D 7, 1057 (1973).

    Article  ADS  Google Scholar 

  3. M. G. Fuda and E. Furlani, “Zitterbewegung and the Klein paradox for spinzero particles,” Am. J. Phys. 50, 545 (1982).

    Article  ADS  Google Scholar 

  4. R. F. O’Connell, “Rotation and spin in physics,” in General Relativity and John Archibald Wheeler, Ed. by I. Ciufolini and R. Matzner (Springer, Berlin, 2010).

    Google Scholar 

  5. R. F. O’Connell, “Zitterbewegung is not an observable,” Mod. Phys. Lett. A 26, 469 (2011).

    Article  ADS  Google Scholar 

  6. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitayevskii, Quantum Electrodynamics, 2nd ed. (Pergamon, Oxford, 1982).

    Google Scholar 

  7. H. Feshbach and F. Villars, “Elementary relativistic quantum mechanics of spin 0 and spin 1/2 particles,” Rev. Mod. Phys. 30, 24 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. F. O’Connell and E. P. Wigner, “On the relation between momentum and velocity for elementary systems,” Phys. Lett. A 61, 353 (1977); “Position operators for systems exhibiting the special relativistic relation between momentum and velocity,” Phys. Lett. A 67, 319 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  9. L. L. Foldy and S. A. Wouthuysen, “On the Dirac theory of spin 1/2 particles and its non-relativistic limit,” Phys. Rev. 78, 29 (1950).

    Article  ADS  Google Scholar 

  10. A. J. Silenko, Pengming Zhang, and Liping Zou, Phys. Rev. Lett. 122, 159302 (2019).

    Article  ADS  Google Scholar 

  11. A. J. Silenko, Pengming Zhang, and Liping Zou, “Position and spin in relativistic quantum mechanics” (to be published).

  12. J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, 1967), p. 177.

    Google Scholar 

  13. M. E. Rose, Relativistic Electron Theory (Wiley, New York, 1961).

    MATH  Google Scholar 

  14. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), p. 52.

    MATH  Google Scholar 

  15. K. Capelle, “Relativistic fluctuations and anomalous Darwin terms in superconductors,” Phys. Rev. B 63, 052503 (2001).

    Article  ADS  Google Scholar 

  16. A. J. Silenko, “Hamilton operator and the semiclassical limit for scalar particles in an electromagnetic field,” Theor. Math. Phys. 156, 1308 (2008).

    Article  MathSciNet  Google Scholar 

  17. A. J. Silenko, “Scalar particle in general inertial and gravitational fields and conformal invariance revisited,” Phys. Rev. D 88, 045004 (2013).

    Article  ADS  Google Scholar 

  18. A. J. Silenko, “New symmetry properties of pointlike scalar and Dirac particles,” Phys. Rev. D 91, 065012 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. J. Silenko, “Quantum-mechanical description of lense-thirring effect for relativistic scalar particles,” Phys. Part. Nucl. Lett. 10, 637 (2013).

    Article  Google Scholar 

  20. A. Proca, “Sur les equations fondamentales des particules élémentaires,” C. R. Acad. Sci. Paris 202, 1490 (1936).

    MATH  Google Scholar 

  21. M. Taketani and S. Sakata, “On the wave equation of meson,” Proc. Phys. Math. Soc. Jpn. 22, 757 (1940).

    MATH  Google Scholar 

  22. J. A. Young and S. A. Bludman, “Electromagnetic properties of a charged vector meson,” Phys. Rev. 131, 2326 (1963).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author acknowledges hospitality and support by the Institute of Modern Physics of the Chinese Academy of Sciences.

Funding

This work was supported in part by the Belarusian Republican Foundation for Fundamental Research (Grant no. Φ18D-002), by the National Natural Science Foundation of China (Grants nos. 11575254 and 11805242), and by the National Key Research and Development Program of China (no. 2016YFE0130800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Silenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silenko, A.J. Zitterbewegung of Bosons. Phys. Part. Nuclei Lett. 17, 116–119 (2020). https://doi.org/10.1134/S1547477120020193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120020193

Keywords:

Navigation