Skip to main content
Log in

Quenching of Axial-Vector Weak Interaction Constant in Halo Nuclei

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Resonance structure of the beta decay strength function Sβ(E) for GT β-decay of halo nuclei 6He and 11Li is analyzed. Compare experimental total strength for β-transitions in \({{g_{V}^{2}} \mathord{\left/ {\vphantom {{g_{V}^{2}} {4\pi }}} \right. \kern-0em} {4\pi }}\) units with the Ikeda sum rule (in \({{{{{\left( {g_{A}^{{{\text{eff}}}}} \right)}}^{2}}} \mathord{\left/ {\vphantom {{{{{\left( {g_{A}^{{{\text{eff}}}}} \right)}}^{2}}} {4\pi }}} \right. \kern-0em} {4\pi }}\) units) one can determine the squared ratio of axial-vector and vector weak interaction constants value \({{\left( {{{g_{A}^{{{\text{eff}}}}} \mathord{\left/ {\vphantom {{g_{A}^{{{\text{eff}}}}} {{{g}_{V}}}}} \right. \kern-0em} {{{g}_{V}}}}} \right)}^{2}}\). We obtained \({{\left( {{{g_{A}^{{{\text{eff}}}}} \mathord{\left/ {\vphantom {{g_{A}^{{{\text{eff}}}}} {{{g}_{V}}}}} \right. \kern-0em} {{{g}_{V}}}}} \right)}^{2}}\) = 1.272 ± 0.010 for 6He and \({{\left( {{{g_{A}^{{{\text{eff}}}}} \mathord{\left/ {\vphantom {{g_{A}^{{{\text{eff}}}}} {{{g}_{V}}}}} \right. \kern-0em} {{{g}_{V}}}}} \right)}^{2}}\) = 1.5 ± 0.2 for 11Li β-decays. Quenching of the weak axial-vector constant \(g_{A}^{{{\text{eff}}}}\) in halo nuclei is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yu. V. Naumov, A. A. Bykov, and I. N. Izosimov, “Structure of β-decay strength functions,” Sov. J. Part. Nucl. 14, 175 (1983).

    Google Scholar 

  2. I. N. Izosimov, V. G. Kalinnikov, and A. A. Solnyshkin, “Fine structure of strength functions for beta decays of atomic nuclei,” Phys. Part. Nucl. 42, 963 (2011).

    Article  Google Scholar 

  3. I. N. Izosimov, A. A. Solnyshkin, J. H. Khushvaktov, and Yu. A. Vaganov, “Fine structure of beta decay strength function and anisotropy of isovector nuclear dencity component oscillations in deformed nuclei,” Phys. Part. Nucl. Lett. 15, 298 (2018), JINR Preprint No. E6-2017-29 (Joint Inst. Nucl. Res., Dubna, 2017).

  4. I. N. Izosimov, “Isobar analog states (IAS), double isobar analog states (DIAS), configuration states (CS), and double configuration states (DCS) in halo nuclei. Halo isomers,” AIP Conf. Proc. 1681, 030006 (2015), JINR Preprint No. E6-2015-41 (Joint Inst. Nucl. Res., Dubna, 2015).

  5. I. N. Izosimov, “Borromean halo, tango halo, and halo isomers in atomic nuclei,” EPJ Web of Conf. 10, 09003 (2016).

    Article  Google Scholar 

  6. I. N. Izosimov, “Isospin in halo nuclei: borromean halo, tango halo, and halo isomers,” Phys. At. Nucl. 80, 867 (2017).

    Article  Google Scholar 

  7. I. N. Izosimov, “Structure of β-decay strength function Sβ(E) in halo nuclei,” Phys. Part. Nucl. Lett. 15, 621 (2018).

    Article  Google Scholar 

  8. Y. Fujita et al., “Observation of low- and high-energy Gamow-Teller phonon excitations in nuclei,” Phys. Rev. Lett. 112, 112502 (2014).

    Article  ADS  Google Scholar 

  9. Y. Fujita et al., “High-resolution study of Gamow–Teller excitations in the 42Ca(3He,t) 42Sc reaction and the observation of a low-energy super-Gamow–Teller state”," Phys. Rev. C 91, 064316 (2015).

    Article  ADS  Google Scholar 

  10. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov.

  11. J. Suhonen, “Value of the axial-vector coupling strength in β and ββ decays: a review,” Front. Phys. 5, 55 (2017).

    Article  Google Scholar 

  12. I. N. Izosimov, “Non-statistical effects manifestation in atomic nuclei,” Phys. Part. Nucl. 30, 131 (1999).

    Article  Google Scholar 

  13. A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, 1969), Vol. 1.

    MATH  Google Scholar 

  14. I. N. Izosimov, V. G. Kalinnikov, and A. A. Solnyshkin, “Resonance structure of the Gamow–Teller (GT) and first forbidden (FF) β+/EC decay strength functions,” J. Phys.: Conf. Ser. 381, 012054 (2012).

    Google Scholar 

  15. I. Tanihata, “Neutron halo nuclei,” J. Phys. G: Nucl. Part. Phys. 22, 157 (1996).

    Article  ADS  Google Scholar 

  16. A. S. Jensen, D. Fedorov, and K. Riisager, “Structure and reactions of quantum halos,” Rev. Mod. Phys. 76, 215 (2004).

    Article  ADS  Google Scholar 

  17. B. Jonson, “Light dripline nuclei,” Phys. Rep. 389, 1 (2004).

    Article  ADS  Google Scholar 

  18. Y. Suzuki and K. Yabana, “Isobaric analogue halo states,” Phys. Lett. B 272, 173 (1991).

    Article  ADS  Google Scholar 

  19. L. Zhihong et al., “First observation of neutron-proton halo structure for the 3.563 MeV 0+ state in 6Li via 1H(6He,6Li)N reaction,” Phys. Lett. B 527, 50 (2002).

    Article  Google Scholar 

  20. Yu. V. Naumov and O. E. Kraft, Isospin in Nuclear Physics (Nauka, Moscow, Leningrad, 1972) [in Russian].

    Google Scholar 

  21. J. K. Tuli, Report BNL-NCS-51655-01/02 Rev. (NNDC, Brookhaven Natl. Labor., New York, 2001).

  22. S. Yoshida, Y. Utsuno, N. Shimizu, and T. Otsuka, “Systematic shell-model study of β-decay properties and Gamow–Teller strength distributions in A ≈ 40 neutron-rich nuclei,” Phys. Rev C 97, 054321 (2018).

    Article  ADS  Google Scholar 

  23. D. R. Tilley et al., “Energy levels of light nuclei A = 6,” Nucl. Phys. A 708, 3 (2002).

    Article  ADS  Google Scholar 

  24. Y. Fujita, Y. Utsuno, and H. Fujita, “Properties of low-energy super Gamow-Teller state,” JPS Conf. Proc. 23, 012030 (2018).

  25. Yu. V. Gaponov, D. M. Vladimirov, and J. Bang, “Spin-isospin symmetry in nuclear physics,” Heavy Ion Phys. 3, 189 (1996).

    Google Scholar 

  26. J. H. Kelley et al., “Energy levels of light nuclei A = 11,” Nucl. Phys. A 880, 88 (2012).

    Article  ADS  Google Scholar 

  27. Yu. S. Lutostansky and V. N. Tikhonov, “Charge-exchange resonances and restoration of Wigner’s supersymmetry in heavy and super-heavy nuclei,” Phys. At. Nucl. 79, 929 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Izosimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izosimov, I.N. Quenching of Axial-Vector Weak Interaction Constant in Halo Nuclei. Phys. Part. Nuclei Lett. 16, 754–760 (2019). https://doi.org/10.1134/S1547477119060207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477119060207

Keywords:

Navigation