Skip to main content
Log in

Threshold Collision Energy of the QCD Phase Diagram Tricritical Endpoint

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Using the most advanced formulation of the hadron resonance gas model we analyze the two sets of irregularities found at chemical freeze-out of central nuclear-nuclear collisions at the center of mass energies 3.8–4.9 GeV and 7.6–9.2 GeV. In addition to previously reported irregularities at the collision energies 4.9 and 9.2 GeV we found sharp peaks of baryonic charge density. Also we analyze the collision energy dependence of the modified Wroblewski factor and the strangeness suppression factor. Based on the thermostatic properties of the mixed phase of a 1st order phase transition and the ones of the Hagedorn mass spectrum we explain, respectively, the reason of observed chemical equilibration of strangeness at the collision energy 4.9 GeV and above 8.7 GeV. It is argued that the both sets of irregularities possibly evidence for two phase transitions, namely, the 1st order transition at lower energy range and the 2nd order transition at higher one. In combination with a recent analysis of the light nuclei number fluctuations we conclude that the center of mass collision energy range 8.8–9.2 GeV may be in the nearest vicinity of the QCD tricritical endpoint. The properties of the phase existing between two phase transitions are revealed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Stephanov, K. Rajagopal, and E. Shuryak, “Eventby-event fluctuations in heavy ion collisions and the QCD critical point,” Phys. Rev. D: Part. Fields 60, 114028–1–32 (1999).

    Article  ADS  Google Scholar 

  2. NICA White Paper, V. 9.01 (2013).

  3. R. Lacey, “Indications for a critical end point in the phase diagram for hot and dense nuclear matter,” Phys. Rev. Lett. 114, 142301 (2015).

    Article  ADS  Google Scholar 

  4. N. G. Antoniou, N. Davis, and F. K. Diakonos, “What is the gamma gamma resonance at 750 GeV?” arXiv:1607.01326v1 [nucl-th] (2016).

    Google Scholar 

  5. M. Ladrem and A. Ait-El-Djoudi, “Finite-size effects and scaling for the thermal QCD deconfinementphase transition within the exact color-singlet partition function,” Eur. Phys. J. C 44, 257–265 (2005).

    Article  ADS  Google Scholar 

  6. K. A. Bugaev, A. I. Ivanytskyi, D. R. Oliinychenko, V.V. Sagun, I. N. Mishustin, D. H. Rischke, L. M. Satarov, and G. M. Zinovjev, “Thermodynamically anomalous regions as a mixed phase signal,” Phys. Part. Nucl. Lett. 12, 238–245 (2015); arXiv:1405.3575.

    Article  Google Scholar 

  7. K. A. Bugaev, A. I. Ivanytskyi, D. R. Oliinychenko, V.V. Sagun, I. N. Mishustin, D. H. Rischke, L. M. Satarov, and G. M. Zinovjev, “Thermodynamically anomalous regions and possible new signals of mixed-phase formation,” Eur. Phys. J. A 52 (6), 175 (2016); arXiv:1412.0718.

    Article  ADS  Google Scholar 

  8. K. A. Bugaev, D. R. Oliinychenko, J. Cleymans, A. I. Ivanytskyi, I. N. Mishustin, E. G. Nikonov, and V. V. Sagun, “Chemical freeze-out of strange particles and possible root of strangeness suppression,” Europhys. Lett. 104, 22002 (2013).

    Article  ADS  Google Scholar 

  9. V. V. Sagun, “Anomaly in the hadronic chemical freeze-out,” Ukr. J. Phys. 59, 755–763 (2014).

    Article  Google Scholar 

  10. K. A. Bugaev, V. V. Sagun, A. I. Ivanytskyi, D. R. Oliinychenko, E. -M. Ilgenfritz, E. G. Nikonov, A. V. Taranenko, and G. M. Zinovjev, “New signals of quark-gluon-hadron mixed phase formation,” Eur. Phys. J. A 52, 227 (2016); arXiv:1510.03099.

    Article  ADS  Google Scholar 

  11. K. A. Bugaev, M. I. Gorenstein, B. Kämpfer, and V. I. Zhdanov, “Generalized shock adiabatics and relativistic nuclear collisions,” Phys. Rev. D: Part. Fields 40, 2903 (1989).

    Article  ADS  Google Scholar 

  12. K. A. Bugaev, M. I. Gorenstein, and D. H. Rischke, “Pion multiplicity in heavy-ion collisions: possible signature of the deconfinement transition,” Phys. Lett. B 255, 18 (1991).

    Article  ADS  Google Scholar 

  13. Kai-Jia Sun, Lie-Wen Chen, Che Ming Ko, and Zhangbu Xu, “Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions,” arXiv:1702.07620v1 [nucl-th] (2017).

    Google Scholar 

  14. K. A. Bugaev, V. V. Sagun, A. I. Ivanytskyi, I. P. Yakimenko, E. G. Nikonov, A. V. Taranenko, and G. M. Zinovjev, “Hadron resonance gas model for an arbitrarily large number of different hard-core radii,” arXiv:1611.07349v2 [nucl-th] (2016).

    Google Scholar 

  15. V. V. Sagun, K. A. Bugaev, A. I. Ivanytskyi, I. P. Yakimenko, E. G. Nikonov, A. V. Taranenko, C. Greiner, D. B. Blaschke, and G. M. Zinovjev, “Hadron resonance gas model with induced surface tension,” arXiv:1703.00049 [nucl-th] (2017).

    Google Scholar 

  16. K. A. Bugaev, A. I. Ivanytskyi, V. V. Sagun, E. G. Nikonov, and G. M. Zinovjev, “Equation of state of quantum gases beyond the van der waals approximation,” arXiv:1704.06846 [nucl-th] (2017).

    Google Scholar 

  17. A. Andronic, P. Braun-Munzinger, and J. Stachel, “Hadron production in central nucleus-nucleus collisions at chemical freeze-out,” Nucl. Phys. A 722, 167 (2006).

    Article  ADS  Google Scholar 

  18. K. A. Bugaev, D. R. Oliinychenko, A. S. Sorin, and G. M. Zinovjev, “Simple solution to the strangeness horn description puzzle,” Eur. Phys. J. A 49, 30 (2013).

    Article  Google Scholar 

  19. D. H. Rischke, M. I. Gorenstein, H. Stocker, and W. Greiner, “Excluded volume effect for the nuclear matter equation of state,” Z. Phys. C 51, 485 (1991).

    Article  Google Scholar 

  20. N. F. Carnahan and K. E. Starlin, “Equation of state for nonattracting rigid spheres,” J. Chem. Phys. 51, 635 (1969).

    Article  ADS  Google Scholar 

  21. G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Jr., “Equation of state for nonattracting rigid spheres,” J. Chem. Phys. 54, 1523 (1971).

    Article  ADS  Google Scholar 

  22. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (London, Academic, 2006).

    MATH  Google Scholar 

  23. J. J. Salacuse and G. Stell, “Polydisperse systems: statistical thermodynamics, with applications to several models including hard and permeable spheres,” J. Chem. Phys. 77, 3714 (1982).

    Article  ADS  Google Scholar 

  24. J. L. Klay et al. (E895 Collab.), “Charged pion production in 2A to 8A GeV central Au + Au collisions,” Phys. Rev. C 68, 054905 (2003).

    Article  ADS  Google Scholar 

  25. L. Ahle et al. (E866 Collab.), “Excitation function of K+ and Π+ production in Au + Au reactions at 2–10 A GeV,” Phys. Lett. B 476, 1 (2000).

    Article  ADS  Google Scholar 

  26. L. Ahle et al. (E866 Collab.), “An excitation function of and production in Au+Au reactions at the AGS,” Phys. Lett. B 490, 53 (2000).

    Article  ADS  Google Scholar 

  27. C. Pinkenburg et al. (E895 Collab.), “Production and collective behavior of strange particles in Au + Au collisions at 2–8 A GeV,” Nucl. Phys. A 698, 495 (2002).

    Article  ADS  Google Scholar 

  28. J. Barrette et al. (E877 Collab.), “Proton and pion production in Au+Au collisions at 10.8 AGeV/c,” Phys. Rev. C 62, 024901 (2000).

    Article  ADS  Google Scholar 

  29. L. Ahle et al. (E802 Collab.), “Proton and deuteron production in Au+Au reactions at 11.6 AGeV/c,” Phys. Rev. C 60, 064901 (1999).

    Article  ADS  Google Scholar 

  30. L. Ahle et al. (E802 Collab.), “Kaon production in Au+Au collisions at 11.6 AGeV/c,” Phys. Rev. C 58, 3523 (1998).

    Article  ADS  Google Scholar 

  31. S. Albergo et al., “Spectra in 11.6 AGeV/c Au–Au collisions,” Phys. Rev. Lett. 88, 062301 (2002).

    Article  ADS  Google Scholar 

  32. B. B. Back et al. (PHOBOS Collab.), “Ratios of charged antiparticles-to-particles near mid-rapidity in Au+Au collisions at \(\sqrt {{s_{NN}}} \)= 130 GeVs,” Phys. Rev. Lett. 87, 102301 (2001).

    Article  ADS  Google Scholar 

  33. I. G. Bearden et al. (NA44 Collab.), “Particle production in central Pb + Pb collisions at 158 AGeV/c,” Phys. Rev. C 66, 044907 (2002).

    Article  ADS  Google Scholar 

  34. S. V. Afanasiev et al. (NA49 Collab.), “Energy dependence of pion and kaon production in central Pb + Pb collisions,” Phys. Rev. C 66, 054902 (2002).

    Article  ADS  Google Scholar 

  35. S. V. Afanasiev et al. (NA49 Collab.), “Energy and centrality dependence of deuteron and proton production in Pb + Pb collisions at relativistic energies,” Phys. Rev. C 69, 024902 (2004).

    Article  ADS  Google Scholar 

  36. C. Alt et al. (NA49 Collab.), “Energy and centrality dependence of anti-p and p production and the antilambda/anti-p ratio in Pb + Pb collisions between 20/A-GeV and 158/A-Gev,” Phys. Rev. C 73, 044910 (2006).

    Article  ADS  Google Scholar 

  37. T. Anticic et al. (NA49 Collab.), “Λ and \(\bar \wedge \) production in central Pb–Pb collisions at 40, 80, and 158 AGeV,” Phys. Rev. Lett. 93, 022302 (2004).

    Article  ADS  Google Scholar 

  38. S. V. Afanasiev et al. (NA49 Collab/), “Ξ- and Ξ+ production in central Pb+Pb collisions at 158 GeV/c per nucleon,” Phys. Rev. B 538, 275 (2002).

    Google Scholar 

  39. C. Alt et al. (NA49 Collab.), “Ω and Ω+ production in central Pb + Pb collisions at 40 and 158 AGeV,” Phys. Rev. Lett. 94, 192301 (2005).

    Article  ADS  Google Scholar 

  40. F. Antinori et al. (NA57 Collab.), “Energy dependence of hyperon production in nucleus-nucleus collisions at SPS,” Phys. Lett. B 595, 68 (2004).

    Article  ADS  Google Scholar 

  41. F. Antinori et al. (NA57 Collab.), “Rapidity distributions around mid-rapidity of strange particles in Pb–Pb collisions at 158 A GeV/C,” J. Phys. G 31, 1345 (2005).

    Article  ADS  Google Scholar 

  42. J. Adams et al. (STAR Collab.), “Identified particle distributions in pp and Au + Au collisions at \(\sqrt {{s_{NN}}} \)= 200 GeV,” Phys. Rev. Lett. 92, 112301 (2004).

    Article  ADS  Google Scholar 

  43. K. A. Bugaev, M. I. Gorenstein, H. Stocker, and W. Greiner, “Van der Waals excluded volume model for Lorentz contracted rigid spheres,” Phys. Lett. B 485, 121 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. K. A. Bugaev, “Van-der-Waals gas EOS for the Lorentz contracted spheres,” Nucl. Phys. A 807, 251 (2008).

    Article  ADS  Google Scholar 

  45. A. K. Wroblewski, “On the strange quark suppression factor in high energy collisions,” Acta Phys. Polon. B 16, 379 (1985).

    Google Scholar 

  46. J. Rafelski, “Strange anti-baryons from quark-gluon plasma,” Phys. Lett. B 262, 333 (1991).

    Article  ADS  Google Scholar 

  47. K. A. Bugaev, D. R. Oliinychenko, A. I. Ivanytskyi, J. Cleymans, E. S. Mironchuk, E. G. Nikonov, A. V. Taranenko, and G. M. Zinovjev, “Separate chemical freeze-outs of strange and non-strange hadrons and problem of residual chemical non-equilibrium of strangeness in relativistic heavy ion collisions,” Ukr. J. Phys. 61, 659 (2016).

    Article  Google Scholar 

  48. R. Hagedorn, “Statistical thermodynamics of strong interactions at high energies,” Nuovo Cimento Suppl. 3, 147 (1965).

    Google Scholar 

  49. L. G. Moretto, K. A. Bugaev, J. B. Elliott, and L. Phair, “Hagedorn thermostat,” Europhys. Lett. 76, 402 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Beitel, K. Gallmeister, and C. Greiner, “Thermalization of hadrons via hagedorn states,” Phys. Rev. C 90, 045203 (2014); arXiv:1402.1458.

    Article  ADS  Google Scholar 

  51. M. Beitel, K. Gallmeister, and C. Greiner, “Equilibration of hadrons in HICs via hagedorn states,” J. Phys.: Conf. Ser. 668, 012057 (2016).

    Google Scholar 

  52. M. Beitel, C. Greiner, and H. Stoecker, “Fast dynamical evolution of a hadron resonance gas via hagedorn states,” Phys. Rev. C 94, 021902 (2016).

    Article  ADS  Google Scholar 

  53. J. K. Nayak, S. Banik, and J. Alam, “The “horn” in the kaon-to-pion ratio,” Phys. Rev. C 82, 024914 (2010).

    Article  ADS  Google Scholar 

  54. V. M. Galitskij and I. N. Mishustin, “The influence of a phase transition on the shock wave dynamics in nuclear matter,” Phys. Lett. B 72, 285 (1978).

    Article  ADS  Google Scholar 

  55. H. Stöcker, G. Graebner, J. A. Maruhn, and W. Greiner, “Hot, dense hadronic and quark matter in relativistic nuclear collisions,” Phys. Lett. B 95, 192 (1980).

    Article  ADS  Google Scholar 

  56. B. Kämpfer, “Phase transitions in dense nuclear matter and consequences for neutron stars,” J. Phys. G 9, 1487 (1983).

    Article  ADS  Google Scholar 

  57. H. Stöcker and W. Greiner, “High energy heavy ion collisions: probing the equation of state of highly excited hardronic matter,” Phys. Rep. 137, 277 (1986).

    Article  ADS  Google Scholar 

  58. H. W. Barz, L. P. Csernai, B. Kämpfer, and B. Lukacs, “Stability of detonation fronts leading to quark-gluon plasma,” Phys. Rev. D: Part. Fields 32, 115 (1985).

    Article  ADS  Google Scholar 

  59. A. V. Merdeev, L. M. Satarov, and I. N. Mishustin, “Hydrodynamic modeling of the deconfinement phase transition in heavy-ion collisions in the NICA-FAIR energy domain,” Phys. Rev. C 84, 014907 (2011).

    Article  ADS  Google Scholar 

  60. Yu. B. Ivanov, V. N. Russkikh, and V. D. Toneev, “Relativistic heavy-ion collisions within three-fluid hydrodynamics: hadronic scenario,” Phys. Rev. C 73, 044904 (2006).

    Article  ADS  Google Scholar 

  61. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1979; Academic, New York, 1967).

    MATH  Google Scholar 

  62. Y. B. Zel’dovich and Y. P. Raiser, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1967).

    Google Scholar 

  63. B. L. Rozhdestvensky and N. N. Yanenko, Systems of Quasi-Linear Equations (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  64. A. Chodos et al., “New extended model of hadrons,” Phys. Rev. D: Part. Fields 9, 3471 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  65. Y. Aoki et al., “The QCD transition temperature: results with physical masses in the continuum limit,” Phys. Lett. B 643, 46 (2006).

    Article  ADS  Google Scholar 

  66. S. A. Chin, “Transition to hot quark matter in relativistic heavy-ion collision,” Phys. Lett. B 78, 552 (1978).

    Article  ADS  Google Scholar 

  67. Particle Data Group, Phys. Lett. B 591, 1 (2004).

  68. W. Cassing, A. Palmese, P. Moreau, and E. L. Bratkovskaya, “Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density,” Phys. Rev. C 93, 014902 (2016).

    Article  ADS  Google Scholar 

  69. A. Palmese et al., “Chiral symmetry restoration in heavy-ion collisions at intermediate energies,” Phys. Rev. C 94, 044912 (2016).

    Article  ADS  Google Scholar 

  70. N. K. Glendenning, “Hot metastable state of abnormal matter in relativistic nuclear field theory,” Nucl. Phys. A 469, 600 (1987).

    Article  ADS  Google Scholar 

  71. S. I. A. Garpman, N. K. Glendenning, and Y. J. Karant, “Thermodynamic behavior of non-strange baryonic matter,” Nucl. Phys. A 322, 382 (1979).

    Article  ADS  Google Scholar 

  72. J. Theis et al., “Phase transition of the nucleon-antinucleon plasma in a relativistic mean-field theory,” Phys. Rev. D: Part. Fields 28, 2286 (1983).

    Article  ADS  Google Scholar 

  73. T. Nakai and S. Takagi, “Influence of the N*(1470) to density isomer and a phase transition of the baryonantibaryon plasma at finite temperatures,” Prog. Theor. Phys. 71, 1118 (1984).

    Article  ADS  Google Scholar 

  74. R. D. Pisarski and V. V. Skokov, “How tetraquarks can generate a second chiral phase transition,” Phys. Rev. D: Part. Fields 94, 054008 (2016).

    Article  ADS  Google Scholar 

  75. A. Andronic et al., “Hadron production in ultra-relativistic nuclear collisions: quarkyonic matter and a triple point in the phase diagram of QCD,” Nucl. Phys. A 837, 65 (2010).

    Article  ADS  Google Scholar 

  76. J. M. Lattimer and F. D. Swesty, “A generalized equation of state for hot, dense matter,” Nucl. Phys. A 535, 331 (1991).

    Article  ADS  Google Scholar 

  77. L. H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, “Relativistic equation of state of nuclear matter for supernova and neutron star,” Nucl. Phys. A 637, 435 (1998).

    Article  ADS  Google Scholar 

  78. S. Typel, “Variations on the excluded-volume mechanism,” Eur. Phys. J. A 52, 16 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bugaev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugaev, K.A., Emaus, R., Sagun, V.V. et al. Threshold Collision Energy of the QCD Phase Diagram Tricritical Endpoint. Phys. Part. Nuclei Lett. 15, 210–224 (2018). https://doi.org/10.1134/S1547477118030068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118030068

Navigation