Skip to main content
Log in

Measuring the astrophysical S factors and the cross sections of the p(d, γ)3He reaction in the ultralow energy region using a zirconium deuteride target

  • Physics of Elementary Particles and Atomic Nuclei. Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The present paper is dedicated to the study of the p(d, γ)3He reaction mechanism with the use of a zirconium deuteride target at proton energies of 11–19 keV. The experiment has been carried out using a proton beam of a high-current pulsed Hall accelerator at the National Research Tomsk Polytechnic University. The dependences of the astrophysical S factor and the effective cross section of the pd reaction on the proton-deuteron collision energy are measured. The results were compared with the available data. The results detailed in the present work agree with the results of an experiment carried out by the LUNA collaboration with the use of a gaseous deuterium target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. P. Merkuriev and L. D. Faddeev, Quantum Scattering Theory for Several Particle Systems (Nauka, Moscow, 1985; Springer, Dordrecht, 1993).

    Google Scholar 

  2. H. Paetz gen Schieck, “Experiments on four-nucleon reactions,” Few-Body Syst. 5, 171–207 (1988).

    Article  Google Scholar 

  3. V. F. Kharchenko et al., “The effects of Coulomb interaction in the processes of proton-deuteron scattering and radiative capture at zero energy,” Yad. Fiz. 55, 86 (1992).

    Google Scholar 

  4. G. S. Chulick et al., “Extended parameterization of nuclear-reaction cross sections for few-nucleon nuclei,” Nucl. Phys. A 551, 255–268 (1993).

    Article  ADS  Google Scholar 

  5. J. Torre and B. Goulard, “Mesonic exchange currents and radiative thermal neutron capture by the deuteron,” Phys. Rev. C 28, 529–537 (1983).

    Article  ADS  Google Scholar 

  6. J. L. Friar et al., “Nuclear transition rates in μ-catalyzed p-d fusion,” Phys. Rev. Lett. 66, 1827–1830 (1991).

    Article  ADS  Google Scholar 

  7. J. L. Friar et al., “Thermal n-d radiative capture,” Phys. Lett. B 251, 11–16 (1990).

    Article  ADS  Google Scholar 

  8. H. J. Assenbaum et al., “Effects of election screening on low-energy fusion cross sections,” Z. Phys. A: At. Nucl. 327, 461–448 (1989).

    ADS  Google Scholar 

  9. J. N. Bahcall and M. H. Pinsonneault, “Standard solar models, with and without helium diffusion, and the solar neutrino problem,” Rev. Mod. Phys. 64, 885–926 (1992).

    Article  ADS  Google Scholar 

  10. V. B. Belyaev et al., “New proposals for the investigation of strong interaction of light nuclei at super low energies,” Nucleonika 40 (2), 85-99 (1995).

    Google Scholar 

  11. W. A. Fowler, “Experimental and theoretical nuclear astrophysics: the quest for the origin of the elements,” Rev. Mod. Phys. 56, 149–179 (1984).

    Article  ADS  Google Scholar 

  12. C. Rolfs and W. S. Rodney, Cauldrons in the Cosmos (Univ. of Chicago Press, Chicago, 1988).

    Google Scholar 

  13. S. W. Stahler, “Deuterium and the stellar birthline,” Astrophys. J. 322, 804–825 (1988).

    Article  ADS  Google Scholar 

  14. G. M. Griffiths et al., “The reaction D(p, γ)3He below 50 keV,” Can. J. Phys. 41, 724–736 (1963).

    Article  ADS  Google Scholar 

  15. G. J. Schmid et al., “The 2H(p, γ)3He and 1H(d, γ)3He reactions below 80 keV,” Phys. Rev. C 56, 2565–2581 (1997).

    Article  ADS  Google Scholar 

  16. C. Casella et al., “First measurement of the d(p, γ)3He cross section down to the solar Gamow peak,” Nucl. Phys. A 706, 203–216 (2002).

    Article  ADS  Google Scholar 

  17. M. Viviani et al., “Theoretical study of the radiative capture reactions 2H(n, γ)3H and 2H(d, γ)3He at low energies,” Phys. Rev. C 54, 534–553 (1996).

    Article  ADS  Google Scholar 

  18. V. M. Bystritsky et al., “Study of the pd reaction in the astrophysical energy region using the Hall accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 543–548 (2008).

    Article  ADS  Google Scholar 

  19. V. M. Bystritsky et al., “Study of the d(d, n)3He reaction in the astrophysical energy region with the use of the Hall accelerator,” Eur. Phys. J. A 36, 151–158 (2008).

    Article  ADS  Google Scholar 

  20. V. M. Bystritsky et al., “Measurement of astrophysical S factors and electron screening potentials for d(d, n)3He reaction In ZrD2, TiD2, D2O, and CD2 targets in the ultralow energy region using plasma accelerators,” Phys. At. Nucl. 75, 53–62 (2012).

    Article  Google Scholar 

  21. V. M. Bystritsky et al., “Investigation of temperature dependence of neutron yield and electron screening potential for the d(d, n)3He reaction proceeding in deuterides ZrD2 and TiD2,” Phys. At. Nucl. 75, 913–922 (2012).

    Article  Google Scholar 

  22. V. M. Bystritsky et al., “Measurement of astrophysical S-factors and electron screening potentials for d(d, n)3He reaction in ZrD2, TiD2 and TaD0.5 targets in the ultralow energy region using plasma accelerator,” Nucl. Phys. A 889, 93–104 (2012).

    Article  ADS  Google Scholar 

  23. F. Raiola et al., “Enhanced d(d, p)t fusion reaction in metals,” Eur. Phys. J. A 27, 79–82 (2006).

    Article  ADS  Google Scholar 

  24. A. Huke et al., “Enhancement of deuteron-fusion reactions in metals and experimental implications,” Phys. Rev. C 78, 015803 (2008).

    Article  ADS  Google Scholar 

  25. U. Greife et al., “Oppenheimer-Phillips effect and electron screening in d + d fusion reactions,” Z. Phys. A: At. Nucl. 351, 107–112 (1995).

    Article  ADS  Google Scholar 

  26. V. M. Bystritsky and F. M. Pen’kov, “Analytic estimates of the product yields for nuclear reaction in the ultralow energy range,” Phys. At. Nucl. 66, 75–80 (2003).

    Article  Google Scholar 

  27. A. P. Kobzev et al., “Investigation of light element contents in subsurface layers of silicon,” Vacuum 83, S124-S126 (2009).

    Google Scholar 

  28. W.-K. Chu, J. W. Mayer, and M.-A. Nicolet, Backscattering Spectrometry (Acad. Press, New York, 1978).

    Google Scholar 

  29. H. Yagi et al., “Elastic recoil detection analysis for hydrogen near the surface of chemical-vapor-deposited diamond,” Jpn. J. Appl. Phys. 34, L577–L579 (1995).

    Article  ADS  Google Scholar 

  30. D. Briggs and M. P. Seah, Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy (Wiley, New York, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Bystritsky, A.P. Kobzev, A.R. Krylov, S.S. Parzhitskii, A.V. Philippov, G.N. Dudkin, B.A. Nechaev, V.N. Padalko, F.M. Pen’kov, Yu.Zh. Tuleushev, M. Filipowicz, Vit.M. Bystritskii, S. Gazi, I. Guran, 2014, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2014, No. 1(185), pp. 74–83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bystritsky, V.M., Kobzev, A.P., Krylov, A.R. et al. Measuring the astrophysical S factors and the cross sections of the p(d, γ)3He reaction in the ultralow energy region using a zirconium deuteride target. Phys. Part. Nuclei Lett. 10, 717–722 (2013). https://doi.org/10.1134/S1547477114010105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477114010105

Keywords

Navigation