Skip to main content
Log in

Calculating particle correlators with the account of detector efficiency

  • Methods of Physical Experiment
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The formulae for m-order correlators K m of a given particle observable (e.g., energy, transverse momentum or a conserved discrete quantum number) accounting for the track reconstruction efficiencies in a real detector are presented. The calculation of second- to fourth-order correlators is considered in some detail. Similar to the case of an ideal detector, the correlators can be expressed through the event-by-event fluctuation measures of the observable single event mean, the pseudocorrelators (determined by the pseudo-central moments of the observable distribution) and their cross terms. It allows one to avoid the combinatorics and essentially reduce the computer time when calculating the higher-order correlators in high multiplicity events. Compared with the case of ideal detector, this reduction is somewhat smaller due to the increased number of pseudocorrelators and additional calculations of the moments of the distribution of the track weights. For a constant track reconstruction efficiency, the correlator formulae reduce to those for an ideal detector. However, in real experiments the efficiencies are usually essentially dependent on particle momenta and may lead to substantial corrections of momentum correlators on the level of tens of percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Kittel and E. A. De Wolf, Soft Multihadron Dynamics (World Sci., USA, Hackensack, 2005), p. 652.

    Book  Google Scholar 

  2. E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996); hep-ph/9508325.

    Article  ADS  Google Scholar 

  3. I. M. Dremin and J. W. Gary, Phys. Rep. 349, 301 (2001); hep-ph/0004215.

    Article  ADS  MATH  Google Scholar 

  4. C. Athanasiou, K. Rajagopal, and M. Stephanov, Phys. Rev., Ser. D 82, 074008 (2010); arXiv:1006.4636 [hep-ph].

    Article  ADS  Google Scholar 

  5. J. Manjavidze and A. Sissakian, Phys. Rep. 346, 1–88; arXiv:hep-ph/0105245.

  6. A. Sissakian, “On the status of very high multiplicity physics,” in The 32nd Int. Symp. on Multiparticle Dynamics (ISMD 2002), Alushta, Ukraine, 2002, pp. 353–357; Phys. At. Nucl. 67, 2 (2004); Yad. Fiz. 67, 4 (2004).

  7. N. Amelin et al., Phys. Part. Nucl. Lett. 4, 461 (2007); arXiv:nucl-th/0504007.

    Article  Google Scholar 

  8. A. V. Stadnik, N. I. Chernov, and S. S. Shimanskiy, JINR Commun. P11-2003-143 (Dubna, 2003); S. S. Shimanskiy, in Proc. of the Sixth Int. Workshop “Very High Multiplicity”, Dubna, 2005, pp. 328–346.

    Google Scholar 

  9. J. Budagov et al., “On correlators for high multiplicity events,” in The 32nd Int. Symp. on Multiparticle Dynamics (ISMD 2002), Alushta, Ukraine, 2002; Phys. At. Nucl. 67, 69 (2004); Yad. Fiz. 67, 70 (2004).

  10. P. Filip, “Corrections to correlators in fluctuation measurements,” Phys. Rev., Ser. C 78, 034912 (2008); arXiv:0711.0608 [nucl-th].

    Article  ADS  Google Scholar 

  11. J. Adams et al. (STAR Collab.), “Incident energy dependence of correlations at RHIC,” Phys. Rev., Ser. C. 72, 044902 (2005); arXiv:nucl-ex/0504031.

    Article  ADS  Google Scholar 

  12. Maplesoft, Maple: Computer Algebra System; http://www.maplesoft.com/; http://en.wikipedia.org/wiki/Maple (software).

  13. T. Sjostrand et al., “PYTHIA 6.4 physics and manual,” JHEP 05, 026 (2006).

    Article  ADS  Google Scholar 

  14. J. Von Neumann, Various Techniques Used in Connection with Random Digits, Monte Carlo Methods, National Bureau Standards (1951), Vol. 12, pp. 36–38.

    Google Scholar 

  15. G. Aad et al. (ATLAS Collab.), Expected Performance of the ATLAS Experiment—Detector, Trigger and Physics, 2009, p. 1852; SLAC-R-980, CERN-OPEN-2008-020; arXiv:0901.0512 [hep-ex].

    Google Scholar 

  16. S. Chatrchyan et al. (CMS Collab.), “The CMS experiment at the CERN LHC,” JINST 3, S08004 (2008).

    Article  ADS  Google Scholar 

  17. K. A. Bloom et al. (CDF Collab.), Track Reconstruction for the CDF Silicon Tracking System, FERMILAB-CONF-98-370-E.

  18. T. Allmendinger et al., Nucl. Instr. Meth., Ser. A 704, 44 (2013); arXiv:1207.2849 [hep-ex].

    Article  ADS  Google Scholar 

  19. Z. Xu et al., LBNL-PUB-5509, 2006, p. 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, A.A., Kulchitsky, Y.A., Lednicky, R. et al. Calculating particle correlators with the account of detector efficiency. Phys. Part. Nuclei Lett. 10, 560–565 (2013). https://doi.org/10.1134/S1547477113060113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477113060113

Keywords

Navigation