Skip to main content
Log in

Control of phase composition of silver iodide by mechanoactivation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The features of mechanochemical synthesis and the criteria for assessing the role of the random factor in the formation of nanosystems have been considered. The phase composition of nanostructured silver iodide is controlled by mechanomodification. Particular attention is paid to the control entropy, characterizing the role of the random factor in the process of the synthesis of nanosystems. The surface morphology of the obtained samples has been studied by scanning electron microscopy. The phase composition has been determined by X-ray analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Svedberg, T., Colloid Chemistry: Wisconsin Lectures, New York: Chemical Catalog, 1924.

    Google Scholar 

  2. Feinman, R., in Miniaturization, Gilbert, A., Ed., New York: Reinhold, 1961, pp. 282–296.

  3. Gleiter, H., Nanostructured materials: basic concepts and microstructure, Acta Mater., 2000, vol. 48, no. 1, p. 1.

    Article  Google Scholar 

  4. Roco, M.C., International strategy for nanotechnology research, J. Nanopart. Res., 2001, vol. 3, nos. 5–6, p. 353.

    Article  Google Scholar 

  5. Poole, C. and Owens, F., Introduction to Nanotechnology, New York: John Wiley and Sons, 2003.

    Google Scholar 

  6. Gusev, A.I. and Rempel’, A.A., Nanokristallicheskie materialy (Nanocrystalline Materials), Moscow: Fizmatlit, 2000.

    Google Scholar 

  7. Suzdalev, I.P., Nanotekhnologiya: Fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physico-Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: KomKniga, 2006.

    Google Scholar 

  8. Gibbs, J.W., Elementary Principles in Statistical Mechanics, London: Edward Arnold, 1902. Translated under the title Termodinamika. Statisticheskaya mekhanika, Moscow: Nauka, 1982.

    Google Scholar 

  9. Tolman, R.C., The effect of droplet size on surface tension, J. Chem. Phys., 1949, vol. 17, no. 3, pp. 333–337.

    Article  Google Scholar 

  10. Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Moscow: Khimiya, 1967.

    Google Scholar 

  11. Eigler, D.M. and Schweizer, E.K., Positioning single atoms with a scanning tunnelling microscope, Nature (London), 1990, vol. 344, no. 6266, pp. 524–526.

    Article  Google Scholar 

  12. Eigler, D.M., Lutz, C.P., and Rudge, W.E., An atomic switch realized with the scanning tunnelling microscope, Nature (London), 1991, vol. 352, no. 6336, pp. 600–603.

    Article  Google Scholar 

  13. Crommie, M.F., Lutz, C.P., and Eigler, D.M., Confinement of electrons to quantum corrals on a metal surface, Science (Washington), 1993, vol. 262, no. 5131, pp. 218–220.

    Article  Google Scholar 

  14. Moshnikov, V.A. and Tomaev, V.V., Formation of nanostructured layers of tin dioxideindium oxide solid solutions with one-dimensional, two-dimensional, and three-dimensional types of nanomorphology, Izv. S.-Peterb. Gos. Elektrotekh. Univ., 2003, no. 1, pp. 15–20.

    Google Scholar 

  15. Polishchuk, V.A., Tomaev, V.V., and Baranov, A.V., Growth of metallic Ag whisker single crystals on AgI films, Tech. Phys., 2014, vol. 59, no. 10, pp. 1476–1481.

    Article  Google Scholar 

  16. Tomaev, V.V. and Glazov, A.I., Morphology of polycrystalline cassiterite films, Crystallogr. Rep., 2014, vol. 59, no. 5, pp. 749–752.

    Article  Google Scholar 

  17. Rebinder, P.A., Izbrannye trudy. Poverkhnostnye yavleniya v dispersnykh sistemakh. Kolloidnaya khimiya (Selected Works on the Surface Phenomena in Dispersed Systems. Colloid Chemistry), Moscow: Nauka, 1978.

    Google Scholar 

  18. Boldyrev, V.V. and Avvakumov, E.G., Mechanochemistry of inorganic substances, Usp. Khim., 1971, vol. 40, pp. 1835–1856.

    Article  Google Scholar 

  19. Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods for Activation of Chemical Processes), Novosibirsk: Nauka, 1986.

    Google Scholar 

  20. Butyagin, P.Yu., Kinetics and nature of mechanochemical reactions, Usp. Khim., 1971, vol. 40, pp. 1935–1959.

    Article  Google Scholar 

  21. Heinike, G., Tribochemistry, Berlin: Academie, 1984. Translated under the title Tribokhimiya, Moscow: Mir, 1986.

    Google Scholar 

  22. Butyagin, P.Yu., Disordering of the structure and mechanochemical reactions in solids, Usp. Khim., 1984, vol. 53, pp. 1769–1789.

    Article  Google Scholar 

  23. Butyagin, P.Yu., Problems in mechanochemistry and prospects for its development, Usp. Khim., 1994, vol. 63, pp. 1031–1043.

    Article  Google Scholar 

  24. Uvarov, N.F. and Boldyrev, V.V., Size effects in the chemistry of heterogeneous systems, Usp. Khim., 2001, vol. 70, pp. 307–329.

    Article  Google Scholar 

  25. Butyagin, P.Yu. and Streletskii, A.N., The kinetics and energy balance of mechanochemical transformations, Phys. Solid State, 2005, vol. 47, no. 5, pp. 856–862.

    Article  Google Scholar 

  26. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela v dvukh tomakh: Tom 1, (Solid State Ionics in Two Volumes: Volume 1), St. Petersburg: St. Petersburg State University, 2000, vol. 1

  27. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela v dvukh tomakh: Tom 2, (Solid State Ionics in Two Volumes: Volume 2), St. Petersburg: St. Petersburg State University, 2010, vol. 2.

  28. Tomaev, V.V., Tver’yanovich, Yu.S., Bal’makov, M.D., and Borisov, E.N., Effect of interphase interaction on ion transport in nanosytems based on AgI and ZnO, Nanotechnol. Russ., 2014, vol. 9, nos. 1–2, pp. 60–64.

    Article  Google Scholar 

  29. Bal’makov, M.D., Information capacity of condensed systems, Phys.—Usp., 1999, vol. 42, no. 11, pp. 1167–1173.

    Article  Google Scholar 

  30. Bal’makov, M., Nanosostoyanie Veshchestva. Analiz problem nanoestestvoznaniya (The Nanostate of Matter: Analysis of the Problems of the Nano-Natural Science), Saarbrücken: LAMBERT, 2013.

    Google Scholar 

  31. Larson, A.C. and Von Dreele, R.B., General Structure Analysis System (GSAS), Los Alamos, New Mexico, United States: National Laboratory Report LAUR, 1994, pp. 86–748.

    Google Scholar 

  32. Toby, B.H., EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr., 2001, vol. 34, p. 210.

    Article  Google Scholar 

  33. Powder Diffraction: Theory and Practice, Dinnebier, R.E. and Billinge, S.J.L., Eds., Cambridge: RSC, 2008, p. 582.

  34. Tomaev, V.V., Tver’yanovich, Yu.S., and Bal’makov, M.D., Structural changes in silver iodide upon mechanochemical treatment, Glass Phys. Chem., 2012, vol. 38, no. 1, pp. 155–161.

    Article  Google Scholar 

  35. Tomaev, V.V., Tveryanovich, Yu.S., and Bal’makov, M.D., Mechanical modification of ß-AgI nanocrystals, Crystallogr. Rep., 2012, vol. 57, no. 7, pp. 948–954.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tomaev.

Additional information

Original Russian Text © V.V. Tomaev, Yu.S. Tver’yanovich, M.D. Bal’makov, I.A. Zvereva, 2015, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaev, V.V., Tver’yanovich, Y.S., Bal’makov, M.D. et al. Control of phase composition of silver iodide by mechanoactivation. Glass Phys Chem 41, 637–642 (2015). https://doi.org/10.1134/S1087659615060176

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659615060176

Keywords

Navigation