Skip to main content
Log in

Monodisperse spherical silica particles with controlled-varied diameter of micro- and mesopores

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A method of fast (1 hour) synthesis of monodisperse spherical silica particles with pore sizes of diameters 0.8 and 2.3–4.5 nm has been developed based on the realization of an aggregate model of particle formation. Cethyl trimethyl ammonium bromide, decyl trimethyl ammonium bromide, and 1,3,5-trimeth-ylbenzene and rhodamine 6G were chosen as the pore-forming agents. The morphological and adsorptive-structural properties of the synthesized materials were studied. The mean-square deviations were no more than 15% for micro- and mesopore diameters, and 10% for the particle diameters. The pore volume and the specific surface of the particles were 0.5–0.8 cm3/g and 600–1100 m2/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, M., Zhou, L., Zhang, J., Yuan, P., Thorn, P., Gu, W., and Yu, C., A simple approach to prepare monodisperse mesoporous silica nanospheres with adjustable sizes, J. Colloid Interface Sci., 2012, vol. 376, no.1, pp. 67–75.

    Article  Google Scholar 

  2. Tang, L., Fan, T.M., Borst, L.B., and Cheng, J., Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates, ACS Nano, 2012, vol. 6, no. 5, pp. 3954–3966.

    Article  Google Scholar 

  3. Vivero-Escoto, J.L., Slowing, I.I., Trewyn, B.G., and Lin, V.S.-Y., Mesoporous silica nanoparticles for intracellular controlled drug delivery, Small, 2010, vol. 6, no. 18, pp. 1952–1967.

    Article  Google Scholar 

  4. Tang, F., Li, L., and Chen, D., Mesoporous silica nanoparticles: Synthesis, biocompatibility, and drug delivery, Adv. Mater. (Weinheim), 2012, vol. 24, no. 12, pp. 1504–1534.

    Article  Google Scholar 

  5. Busch, K. and John, S., Photonic band gap formation in certain self-organizing systems, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 58, no. 3, pp. 3896–3928.

    Article  Google Scholar 

  6. Nakamura, T., Yamada, H., Yamada, Yu., Gürtanyel, A., Hartmann, S., Hüsing, N., and Yano, K., New strategy using glycol-modified silane to synthesize monodispersed mesoporous silica spheres applicable to colloidal photonic crystals, Langmuir, 2010, vol. 26, no. 3, pp. 2002–2007.

    Article  Google Scholar 

  7. Trofimova, E.Yu., Kurdyukov, D.A., Yakovlev, S.A., Kirilenko, D.A., Kukushkina, Yu.A., Nashchekin, A.V., Sitnikova, A.A., Yagovkina, M.A., and Golubev, V.G., Monodisperse spherical mesoporous silica particles: Fast synthesis procedure and fabrication of photonic crystal films, Nanotechnology, 2013, vol. 24, no. 15, pp. 155601–155612.

    Article  Google Scholar 

  8. Yano, K. and Fukushima, Y., Particle size control of mono-dispersed super-microporous silica spheres, J. Mater. Chem., 2003, vol. 13, no. 10, pp. 2577–2581.

    Article  Google Scholar 

  9. Büchel, G., Unger, K.K., Matsumoto, A., and Tsutsumi, K., A novel pathway for synthesis of submicrometer-size solid core/mesoporous shell silica spheres, Adv. Mater. (Weinheim), 1998, vol. 10, no. 13, pp. 1036–1038.

    Article  Google Scholar 

  10. Li, L.-S., Wang, Y., Young, D.J., Ng, S.-C., and Tan, T.T.Y., Monodispersed submicron porous silica particles functionalized with CD derivatives for chiral CEC, Electrophoresis, 2010, vol. 31, no. 2, pp. 378–387.

    Article  Google Scholar 

  11. Trofimova, E.Yu., Kurdyukov, D.A., Kukushkina, Yu.A., Yagovkina, M.A., and Golubev, V.G., Synthesis of monodispersed mesoporous spheres of submicron size amorphous silica, Glass Phys. Chem., 2011, vol. 37, no. 4, pp. 378–384.

    Article  Google Scholar 

  12. Mizutani, M., Yamada, Y., and Yano, K., Pore-expansion of monodisperse mesoporous silica spheres by a novel surfactant exchange method, Chem. Commun. (Cambridge), 2007, vol. 11, pp. 1172–1174.

    Article  Google Scholar 

  13. Jana, S.K., Mochizuki, A., and Namba, S., Progress in pore-size control of mesoporous MCM-41 molecular sieve using surfactant having different alkyl chain lengths and various organic auxiliary chemicals, Catal. Surv., 2004, vol. 8, pp. 1–13.

    Article  Google Scholar 

  14. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, T.W.C., Olson, D.H., and Sheppard, E.W., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 1992, vol. 114, no. 27, pp. 10834–10843.

    Article  Google Scholar 

  15. Sayari, A., Yang, Y., Kruk, M., and Jaroniec, M., Expanding the pore size of MCM-41 silicas: Use of amines as expanders in direct synthesis and postsynthesis procedures, J. Phys. Chem. B, 1999, vol. 103, pp. 3651–3658.

    Article  Google Scholar 

  16. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores, Science (Washington), 1998, vol. 279, no. 5350, pp. 548–552.

    Article  Google Scholar 

  17. Kim, T.-W., Ryoo, R., Kruk, M., Gierszal, K.P., Jaroniec, M., Kamiya, S., and Terasaki, O., Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time, J. Phys. Chem. B, 2004, vol. 108, pp. 11480–11489.

    Article  Google Scholar 

  18. Abramzon, A.A., Bocharov, V.V., Gaevoi, G.M., Maiofis, A.D., Maiofis, R.M., Matashkina, R.M., Skvirskii, L.Ya., Chistyakov, B.E., and Shul’ts, L.A., Poverkhnostno-aktivnye veshchestva. Spravochnik (Surface Active Agents: A Reference Book), Abramzon, A.A. and Gaevoi, G.M., Eds., Moscow: Khimiya, 1979.

  19. Trofimova, E.Yu., Aleksenskii, A.E., Grudinkin, S.A., Korkin, I.V., Kurdyukov, D.A., and Golubev, V.G., Effect of tetraethoxysilane pretreatment on synthesis of colloidal particles of amorphous silicon dioxide, Colloid J., 2011, vol. 73, pp. 546–551.

    Article  Google Scholar 

  20. Gregg, S. and Sing, K., Adsorption, Surface Area, and Porosity, New York: Academic, 1982. Translated under the title Adsorbtsiya, udel’naya poverkhnost’, poristost’, Moscow: Mir, 1984.

    Google Scholar 

  21. Jaroniec, M., Kruk, M., Olivier, J.P., and Koch, S., A new method for the accurate size analysis of MCM-41 and other silica-based mesoporous materials, Stud. Surf. Sci. Catal., 2000, vol. 128, pp. 71–80.

    Google Scholar 

  22. Lu, Y., Cao, G., Kale, R.P., Prabakar, S., López, G.P., and Brinker, C.J., Microporous silica prepared by organic templating: Relationship between the molecular template and pore structure, Chem. Mater., 1999, vol. 11, no. 5, pp. 1223–1229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Stovpiaga.

Additional information

Original Russian Text © E.Yu. Stovpiaga, D.A. Kurdyukov, Yu.A. Kukushkina, V.V. Sokolov, M.A. Yagovkina, 2015, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stovpiaga, E.Y., Kurdyukov, D.A., Kukushkina, Y.A. et al. Monodisperse spherical silica particles with controlled-varied diameter of micro- and mesopores. Glass Phys Chem 41, 316–323 (2015). https://doi.org/10.1134/S1087659615030153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659615030153

Keywords

Navigation