Skip to main content
Log in

Theoretical analysis of constants of elasticity of lead calcium alumino-borosilicate glass system

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This paper reports on the constants of elasticity of xPbO-RNa2B4O7-(100 − Rx) CAS with 0 ≤ x ≤ 50, and 50 ≤ R ≤ 75 mol % glass system (CAS is calcium alumino silicate glasses). The constants of elasticity were calculated in terms of the bond compression model and Makishima-Mackenzie model. The average cross-link density, the number of network bonds per unit volume, the average stretching-force constant, and the ratio of the estimated bulk modulus (K bc ) to the experimentally determined (K e ), have been calculated and discussed in terms of the bond compression model to analyze the role of PbO. Young’s modulus, the packing density and dissociation energy have been calculated and analyzed according to the Makishima-Mackenzie model. The dimensionality of the glassy network has been calculated in terms of the d ratio (4C 44/C 12) and discussed in terms of the cross-link density of these glasses. C 12 = C 11−2C 44, C 11 and C 44 are the longitudinal and shear elastic constant. The results show good agreement between the experimental and theoretical data for the representation of the constants of elasticity of borosilicate glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, J. and Smith, R., Borate Raw Materials, Glass Tech., 2000, vol. 41, no. 6, pp. 169–173.

    CAS  Google Scholar 

  2. Varshneya, A., Fundamentals of Inorganic Glasses, New York: Academic, 1994.

    Google Scholar 

  3. Petrovskaya, T., Properties of Lead Borosilicate Glasses: The Effect of the Structure, Glass Ceram., 1997, vol. 54, no. 11, pp. 347–350.

    Article  CAS  Google Scholar 

  4. Sawvel, A., Chinn, S., Bourcier, W., and Maxwell, R., Local Structure of Amorphous (PbO)x[(B2O3)1 − z (Al2O3)z]y(SiO2)y Dielectric Materials by Multinuclear Solid State NMR, Chem. Mater., 2005, vol. 17, pp. 1493–1500.

    Article  CAS  Google Scholar 

  5. Ramkumar, J., Sudarsan, V., Chandramouleeswaran, S., Shrikhande, V., Kothiyal, G., Ravindran, P., Kulshreshtha, S., and Mukherjee, T., Structural Studies on Boroaluminosilicate Glasses, J. Non-Cryst. Solids, 2008, vol. 354, no. 15, pp. 1591–1597.

    Article  CAS  Google Scholar 

  6. Arora, M., Baccaro, S., Sharma, G., Singh, D., Thind, K.S., and Singh, D.P., Radiation Effects on PbO-Al2O3-B2O3-SiO2 Glasses by FTIR Spectroscopy, Nucl. Instrum. Methods Phys. Res., Sect. B, 2009, vol. 267, pp. 817–820.

    Article  CAS  Google Scholar 

  7. Jellison, G. and Bray, P., A Structural Interpretation of B10 and B11 NMR Spectra in Sodium Borate Glasses, J. Non-Cryst. Solids, 1978, vol. 29, pp. 187–206.

    Article  CAS  Google Scholar 

  8. Feller, S., Dell, W., and Bray, P., B10 NMR Studies of Lithium Borate Glasses, J. Non-Cryst. Solids, 1982, vol. 51, pp. 21–30.

    Article  CAS  Google Scholar 

  9. Bhasin, G., Bhatnagar, A., Bhowmik, S., Stehle, C., Affatigato, M., Feller, S., MacKenzie, J., and Martin, S., Short-Range Order in Sodium Borosilicate Glasses Obtained via Deconvolution of 29Si MAS NMR Spectra, Phys. Chem. Glasses, 1998, vol. 39, no. 5, pp. 269–274.

    CAS  Google Scholar 

  10. Parkinson, B., Holland, D., Smith, M., Howes, A., and Scales, C., The Effect of Cs2O Additions on HLW Wasteform Glasses, J. Non-Cryst. Solids, 2005, vol. 351, pp. 2425–2432.

    Article  CAS  Google Scholar 

  11. Saddeek, Y., Gaafar, M., and Bashier, S., Structural Influence of PbO by Means of FTIR and Acoustics on Calcium Alumino-Borosilicate Glass System, J. Non-Cryst. Solids, 2010, vol. 356, nos. 20–22, pp. 1089–1095.

    Article  CAS  Google Scholar 

  12. Saddeek, Y., Structural and Acoustical Studies of Lead Sodium Borate Glasses, J. Alloys Compd., 2009, vol. 467, nos. 1–2, pp. 14–21.

    Article  CAS  Google Scholar 

  13. Dell, W., Bray, P., and Xiao, S., 11B NMR Studies and Structural Modeling of Na2O-B2O3-SiO2 Glasses of High Soda Content, J. Non-Cryst. Solids, 1983, vol. 58, no. 1, pp. 1–16.

    Article  CAS  Google Scholar 

  14. Stentz, D., Blair, S., Goater, C., Feller, S., and Affatigato, M., Determination of the Mesostructure of Lead Borate Glasses Using Laser Photoionization Mass Spectroscopy, Appl. Phys. Lett., 2000, vol. 76, no. 1, pp. 61–63.

    Article  CAS  Google Scholar 

  15. Martens, R. and Muller-Warmuth, W., Structural Groups and Their Mixing in Borosilicate Glasses of Various Compositions-An NMR Study, J. Non-Cryst. Solids, 2000, vol. 265, no. 1, pp. 167–175.

    Article  CAS  Google Scholar 

  16. Wright, A., Borate Structures: Crystalline and Vitreous, Phys. Chem. Glasses, 2010, vol. 51, no. 1, pp. 1–39.

    CAS  Google Scholar 

  17. Makishima, A. and Mackenzie, J., Direct Calculation of Young’s Modulus of Glass, J. Non-Cryst. Solids, 1973, vol. 12, no. 1, pp. 35–45.

    Article  CAS  Google Scholar 

  18. Makishima, A. and Mackenzie, J., Calculation of Bulk Modulus, Shear Modulus, and Poisson’s Ratio of Glass, J. Non-Cryst. Solids, 1975, vol. 17, no. 2, pp. 147–157.

    Article  CAS  Google Scholar 

  19. Abd El-Moneim, A., Yossouf, I., and Shoaib, M., Elastic Moduli Prediction and Correlation in SiO2-Based Glasses, Mater. Chem. Phys., 1998, vol. 52, no. 3, pp. 258–262.

    Article  CAS  Google Scholar 

  20. Hwa, L., Lu, C., and Liu, L., Elastic Moduli of Calcium Alumino-Silicate Glasses Studied by Brillouin Scattering, Mater. Res. Bull., 2000, vol. 35, pp. 1285–1292.

    Article  CAS  Google Scholar 

  21. Hwa, L., Hsieh, K., and Liu, L., Elastic Moduli of Low-Silica Calcium Alumino-Silicate Glasses, Mater. Chem. Phys., 2002, vol. 78, pp. 105–110.

    Article  CAS  Google Scholar 

  22. Sampio, J., Baesso, M., Gama, S., Coelho, A., Eiras, J., and Santos, I., Rare-Earth Doping Effect on the Elastic Moduli of Low Silica Calcium Aluminosilicate Glasses, J. Non-Cryst. Solids, 2002, vol. 304, pp. 293–298.

    Article  Google Scholar 

  23. Hwa, L., Lee, T., and Szu, S., Elastic Properties of Lanthanum Aluminosilicate Glasses, Mater. Res. Bull., 2004, vol. 39, pp. 33–40.

    Article  CAS  Google Scholar 

  24. Inaba, S., Fujino, S., and Morinaga, K., Young’s Modulus and Compositional Parameters of Oxide Glasses, J. Am. Ceram. Soc., 1999, vol. 82, no. 12, pp. 3501–3507.

    Article  CAS  Google Scholar 

  25. Bridge, B., Patel, N., and Waters, D., On the Elastic Constants and Structure of the Inorganic Oxide Glasses, Phys. Status Solidi A, 1983, vol. 77, no. 2, pp. 655–668.

    Article  CAS  Google Scholar 

  26. Bridge, B. and Higazy, A., Model of the Compositional Dependence of the Elastic Moduli of Polycomponent Oxide Glasses, Phys. Chem. Glasses, 1986, vol. 27, no. 1, pp. 1–14.

    CAS  Google Scholar 

  27. Tilocca, A., De Leeuw, N., and Cormack, A., Shell-Model Molecular Dynamics Calculations of Modified Silicate Glasses, Phys. Rev. B: Condens. Matter, 2006, vol. 73, no. 10, article 104209.

  28. Saddeek, Y., Structural Analysis of Alkali Borate Glasses, Physica B, 2004, vol. 344, nos. 1–4, pp. 163–175.

    Article  CAS  Google Scholar 

  29. Saddeek, Y., Structural Interpretations of Aluminosilicate Glasses, Physica B, 2005, vol. 363, nos. 1–4, pp. 19–24.

    Article  CAS  Google Scholar 

  30. Saddeek, Y., Gaafar, M., and Abd El-Aal, N., and Abd El-Latif, L., Structural Analysis of Some Alkali Diborate Glasses, Acta Phys. Pol., B, 2009, vol. 116, no. 2, pp. 211–216.

    CAS  Google Scholar 

  31. Chen, C., Wu, Y., and Hwa, G., Temperature Dependence of Elastic Properties of ZBLAN Glasses, Mater. Chem. Phys., 2000, vol. 65, no. 3, pp. 306–309.

    Article  CAS  Google Scholar 

  32. Wells, A., Structural Inorganic Chemistry, Oxford: Clarendon, 1975, 4th ed.

    Google Scholar 

  33. Hafner, H., Kreidl, N., and Weidel, R., Optical and Physical Properties of Some Calcium-Aluminate Glasses, J. Am. Ceram. Soc., 1958, vol. 41, no. 8, pp. 315–323.

    Article  CAS  Google Scholar 

  34. Yeganeh-Haeri, A., Ho, C., Weber, R., Diefenbacher, J., and McMillan, P., Elastic Properties of Aluminate Glasses via Brillouin Spectroscopy, J. Non-Cryst. Solids, 1998, vol. 241, pp. 200–203.

    Article  CAS  Google Scholar 

  35. Clayden, N., Esposito, S., Aronne, A., and Pernice, P., Solid-State 27Al NMR and FTIR Study of Lanthanum Aluminosilicate Glasses, J. Non-Cryst. Solids, 1999, vol. 258, pp. 11–19.

    Article  CAS  Google Scholar 

  36. Farnan, I., Oxygen Bridges in Molten Glass, Nature (London), 1997, vol. 390, pp. 14–15.

    Article  CAS  Google Scholar 

  37. Yamane, M. and Okuyama, M., Coordination Number of Aluminum Ions in Alkali-Free Alumino-Silicate Glasses, J. Non-Cryst. Solids, 1982, vol. 52, pp. 217–226.

    Article  CAS  Google Scholar 

  38. Stebbins, J. and Xu, Z., NMR Evidence for Excess Non-Bridging Oxygen in an Aluminosilicate Glass, Nature (London), 1997, vol. 390, pp. 60–62.

    Article  CAS  Google Scholar 

  39. So, A., Lai, B., and Chan, S., Economical Design of Glass and Aluminum Panels by the Large Deflection Theory, HKIE Trans., 2002, p. 9.

  40. Structural Use of Glass in Buildings, London: Institution of Structural Engineers, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser B. Saddeek.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saddeek, Y.B., Bashier, S.A. & Bakr, S.A. Theoretical analysis of constants of elasticity of lead calcium alumino-borosilicate glass system. Glass Phys Chem 38, 437–443 (2012). https://doi.org/10.1134/S1087659612050069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659612050069

Keywords

Navigation