Skip to main content
Log in

Natisite, Na2TiSiO5, an Indicator Mineral of Hyperagpaitic Hydrothermal Assemblages in the Lovozero and Khibiny Alkaline Plutons, Kola Peninsula: Occurrence, Crystal Chemistry, and Genetic Features

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Natisite, a natural tetragonal (P4/nmm) modification of Na2TiSiO5 = Na2TiO(SiO4) is an abundant indicator mineral of relatively low-temperature (no higher than 300–350°C) peralkaline (hyperagpaitic) hydrothermal assemblages in the Lovozero and Khibiny alkaline plutons, Kola Peninsula, Russia. The proportion of natisite in hypersodic (with Na \( \gg \) K) hydrothermal veins in Lovozero and in the hydrothermally altered zones of potassium-rich pegmatites in Khibiny is up to 30 and 10 vol %, respectively; i.e., natisite can be a rock-forming mineral and the major Ti concentrator in the rock. In Lovozero, natisite is a primary mineral crystallized from hydrothermal solution, whereas in Khibiny, natisite is secondary: it predominantly occurs as pseudomorphs after earlier Ti minerals, namely, ilmenite, titanite, aenigmatite, lamprophyllite and rinkite. The chemical composition of natisite is rather stable, close to Na2TiSiO5. A very bright blue to bluish white fluorescence in shortwave ultraviolet light (λ = 245 nm) is an important identification feature of natisite. The crystal structure of natisite was first solved for a natural sample (Mt. Rasvumchorr, Khibiny), R1 = 1.97%. A comparative study of natisite and other titanosilicates with tetragonal pyramids TiO5 revealed a distinct negative correlation between the length of an essentially covalent Ti–O bond in the titanyl group and the frequency of its stretching vibrations in the IR spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Breck, D.W., Zeolites Molecular Sieves: Structure, Chemistry and Use, New York, 1974.

    Google Scholar 

  2. Bussen, I.V., Es’kova, E.M., Men’shikov, Yu.P., Mer’kov, A.N., Semenov, E.I., and Khomyakov, A.P., Mineralogy of hyperalkaline pegmatites, Problemy geologii redkikh elementov (Problems of Geology of Rare Elements), Moscow, 1978, pp. 251–271.

  3. Chukanov, N.V., Infrared Spectra of Mineral Species: Extended Library, Dordrecht: Springer, 2014.

    Book  Google Scholar 

  4. Chukanov, N.V. and Chervonnyi, A.D., Infrared Spectroscopy of Minerals and Related Compounds, Cham: Springer, 2016.

    Book  Google Scholar 

  5. Chukanov, N.V. and Vigasina, M.F., Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds, Dordrecht: Springer, 2020.

    Book  Google Scholar 

  6. Chukanov, N.V., Rastsvetaeva, R.K., Britvin, S.N., Virus, A.A., Belakovskiy, D.I., Pekov, I.V., Aksenov, S.M., and Ternes, B., Schüllerite, Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4,  a new mineral species from the Eifel volcanic district, Germany, Geol. Ore Deposits, 2011, vol. 53, no. 8, pp. 767–774.

    Article  Google Scholar 

  7. Chukanov, N.V., Pekov, I.V., Rastsvetaeva, R.K., Aksenov, S.M., Zadov, A.E., Van, K.V., Blass, G., Schüller, W., and Ternes, B., Lileyite, Ba2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel volcanic area, Germany, Eur. J. Mineral., 2012, vol. 24, pp. 181–188.

    Article  Google Scholar 

  8. Chukanov, N.V., Rastsvetaeva, R.K., Aksenov, S.M., Blass, G., Pekov, I.V., Belakovskiy, D.I., Tschörtner, J., Schüller, W., and Ternes, B., Emmerichite, Ba2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel paleovolcanic region, Germany, New Data on Minerals, 2014, vol. 49, pp. 5–13.

    Google Scholar 

  9. Ding, J., Li, Y., Wu, Q., Long, Q., Wang, Yi., and Wang, Yu., A novel self-activated white-light-emitting phosphor of Na2TiSiO5 with two Ti sites of TiO5 and TiO6, RSC Advances, 2016, vol. 6, no. 11, pp. 8605–8611

    Article  Google Scholar 

  10. Egorov-Tismenko, Yu.K., Simonov, M.A., and Belov, N.V., The refinement of the crystal structure of the synthetic sodium titanosilicate Na2(TiO)[SiO4], Dokl. Akad. Nauk SSSR, 1978, vol. 240, no. 1, pp. 78–80.

    Google Scholar 

  11. Filina, M.I., Aksenov, S.M., Sorokhtina, N.V., Chukanov, N.V., Kononkova, N.N., Belakovskiy, D.I., Britvin, S.N., Kogarko, L.N., Chervonnyi, A.D., and Rastsvetaeva, R.K., The new mineral fluorbarytolamprophyllite, (Ba,Sr)2[(Na,Fe2+)3(Ti,Mg)F2][Ti2(Si2O7)2O2] and chemical evolution of lamprophyllite-group minerals in agpaitic syenites of the Kola Peninsula, Mineral. Petrol., 2019, vol. 113, no. 4, pp. 533–553.

    Article  Google Scholar 

  12. Glasser, F.P. and Marr, J., Phase relations in the system Na2O–TiO2–SiO2, J. Amer. Ceramic Soc., 1979, vol. 62, no. 1–2, pp. 42–47.

  13. He, D., Wu, T., Wang, B., Yang, Y., Zhao, S., Wang, J., and Yu, H., Novel Na2TiSiO5 anode material for lithium ion batteries, Chem. Commun., 2019, vol. 55, pp. 2234–2237.

    Article  Google Scholar 

  14. Khomyakov, A.P., Mineralogiya ultraagpaitovykh shchelochnykh porod, (Mineralogy of the Hyperagpaitic Alkaline Rocks) Moscow: Nauka, 1990.

  15. Khomyakov, A.P., Mineralogy of Hyperagpaitic Alkaline Rocks, Oxford: Clarendon Press, 1995.

    Google Scholar 

  16. Khomyakov, A.P., Kobyashev Yu.S. Natisite—the first finding in the Khibiny massif, In: Novye dannye po mineralogii mestorozhdenii shchelochnykh formatsii (New Data on the Mineralogy of the Deposits of Alkaline Formations), Moscow: IMGRE, 1979, pp. 16–19.

  17. Khomyakov, A.P., Polezhaeva, L.I., and Sokolova, E.V., Paranatisite, Na2TiSiO5, a new mineral, Zap. Ross. Mineral. O-va, 1992, vol. 121, no. 6, pp. 133—137.

    Google Scholar 

  18. Men’shikov, Yu.P., Pakhomovskii, Ya.A., Goiko, E.A., Bussen, I.V., and Mer’kov, A.N., Natisite, a natural tetragonal titanosilicate of sodium, Zap. Vsesoyuz. Mineral. O-va, 1975, vol. 104, no. 3, pp. 314–317.

    Google Scholar 

  19. Moore, P.B. and Louisnathan, S.J., The crystal structure of fresnoite, Ba2(TiO)Si2O7, Zeit. Krist., 1969, vol. 130, pp. 438–448.

    Article  Google Scholar 

  20. Nikitin, A.V., Ilyukhin, V.V., Litvin, B.N., Melnikov, O.K., and Belov, N.B., Crystal structure of the synthetic sodium titanosilicate Na2(TiO)[SiO4], Dokl. Akad. Nauk SSSR, 1964, vol. 157, pp. 1355—1357.

    Google Scholar 

  21. Nyman, H., O’Keeffe, M., and Bovin, J.-O., Sodium titanium silicate, Na2TiSiO5, Acta Cryst., 1978, vol. B34, pp. 905–906.

    Article  Google Scholar 

  22. Pekov, I.V., Lovozero Massif: History, Pegmatites, Minerals, Moscow: OP, 2000.

  23. Pekov, I.V., Lovozerskii Massiv: istoriya issledovaniya, pegmatity, mineraly (Lovozero Massif: History, Pegmatites, Minerals), Moscow: Zemlya, 2001.

  24. Pekov, I.V., Genetic Mineralogy and Crystal Chemistry of Rare Elements in High-alkaline Postmagmatic Systems, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Moscow: Moscow State University, 2005.

  25. Pekov, I.V., The Palitra pegmatite, a newly discovered hyperalkaline pegmatite in the Lovozero Massif, Kola Peninsula, Russia, Miner. Record, 2005, vol. 36, no. 5, pp. 397–416.

    Google Scholar 

  26. Pekov, I.V., Hyperalkaline veiny hydrothermalites in the rocks of the ore-bearing layered complex of the Lovozero massif, Kola Peninsula: mineralogy and mechanism of formation, In: Tr. III Fersmanovskoi nauchnoi sessii Kol’skogo otdeleniya Ross. Mineral. O-va, (Proc. of 3rd Fersman Sci. Session of the Kola Branch of the Russian Mineralogical Society), Apatity, 2006, pp. 132–135.

  27. Pekov, I.V., Specific peralkaline hydrothermal formation related to ore-bearing complex of the Lovozero massif (Kola peninsula, Russia): mineralogy, origin, behavior of rare elements, In: Proc. of XXXV Int. Conf. “Magmatism of the Earth and Related Strategic Metals Deposits, Moscow: GEOKHI RAS, 2018, pp. 227–230.

  28. Pekov, I.V. and Nikolaev, A.P., Minerals of the pegmatites and hydrothermal assemblages of the Koashva deposit (Khibiny, Kola peninsula, Russia), Miner. Almanakh, 2013, vol. 18, no. 2, pp. 6–65.

    Google Scholar 

  29. Pekov, I.V. and Podlesnyi, A.S., Mineralogiya Kukisvumchorrskogo mestorozhdeniya (shchlochnye pegmatity i gidrotermality (Kukisvumchorr Deposit: Mineralogy of Alkaline Pegmatites and Hydrothermalites), Moscow: Zemlya, 2004.

  30. Pekov, I.V., Turchkova, A.G., Lovskaya, E.V., and Chukanov, N.V., Tseolity shchelochnykh massivov (Zeolites of Alkaline Massifs), Moscow: Ekost, 2004.

  31. Perovskiy, I.A., Titanosilicates from Leucoxene Ores of the Yaregskoe Deposit: Synthesis, Properties, and Use, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Syktyvkar, 2020.

  32. Rastsvetaeva, R.K., Sokolova, M.N., and Gusev, A.I., Refined crystal structure of lamprophyllite, Miner. J., 1990, vol. 12, no. 5, pp. 25–28.

    Google Scholar 

  33. Rigaku Oxford Diffraction. CrysAlisPro Software System, v. 1.171.39.46, Oxford: Rigaku Corporation, 2018.

  34. Sheldrick, G.M., Crystal structure refinement with SHELXL, Acta Cryst., 2015, vol. C71, pp. 3–8.

    Google Scholar 

  35. Sokolova, E. and Cámara, F., From structure topology to chemical composition. III. Titanium silicates: The crystal chemistry of barytolamprophyllite, Can. Mineral., 2008, vol. 46, pp. 403–412.

    Article  Google Scholar 

  36. Sokolova, E. and Hawthorne, F.C., Reconsideration of the crystal structure of paranatisite and the crystal chemistry of [[6]M2 [4]T2Ø12] sheets, Can. Mineral., 2002, vol. 40, pp. 947–960.

    Article  Google Scholar 

  37. Sokolova, E., Hawthorne, F.C., and Abdu, Y., From structure topology to chemical composition. XV. Titanium silicates: revision of the crystal structure and chemical formula of schüllerite, Na2Ba2Mg2Ti2(Si2O7)2O2F2, from the Eifel volcanic region, Germany, Can. Mineral., 2013, vol. 51, pp. 715–725.

    Article  Google Scholar 

  38. Taylor, M. and Brown, G.E., High-temperature structural study of the P21/aA2/a phase transition in synthetic titanite, CaTiSiO5, Am. Mineral., 1976, vol. 61, pp. 435–447.

    Google Scholar 

  39. Yakovenchuk, V.N., Ivanyuk, G.Yu., Pakhomovsky, Ya.A., and Men’shikov, Yu.P., Mineraly Khibinskogo massiva, (Minerals of the Khibiny massif), Moscow: Zemlya, 1999.

  40. Ziadi, A., Hillebrecht, H., Thiele, G., and Elouadi, B., Crystal structure of orthorhombic LT-Na2TiSiO5 and its relation to the tetragonal HT-form, J. Solid State Chem., 1996, vol. 109, pp. 112–115.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-29-12007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Pekov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekov, I.V., Zubkova, N.V., Chukanov, N.V. et al. Natisite, Na2TiSiO5, an Indicator Mineral of Hyperagpaitic Hydrothermal Assemblages in the Lovozero and Khibiny Alkaline Plutons, Kola Peninsula: Occurrence, Crystal Chemistry, and Genetic Features. Geol. Ore Deposits 64, 452–469 (2022). https://doi.org/10.1134/S1075701522070066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522070066

Keywords:

Navigation