Skip to main content
Log in

Synthesis of 5-Chloroisoxazoles Derived from 2,2-Dichlorovinyl Ketones

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The reactions of 2,2-dichlorovinyl ketones with hydroxylamine hydrochloride give the corresponding oximes. The subsequent heterocyclization of the latter under the action of t-BuOK in t-BuOH results in selective formation of 5-chloro-3-alkyl- or 5-chloro-3-aryl-substituted isoxazoles in good yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme

Similar content being viewed by others

REFERENCES

  1. Krishna, V.C. and Raja, S., Int. J. Pharm. Pharm. Sci., 2017, vol. 9, p. 13. https://doi.org/10.22159/ijpps.2017.v9i7.19097

    Article  CAS  Google Scholar 

  2. Agrawal, N. and Mishra, P., Med. Chem. Res., 2018, vol. 27, p. 1309. https://doi.org/10.1007/s00044-018-2152-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shiryaev, V.A. and Klimochkin, Y.N., Chem. Heterocycl. Compd., 2020, vol. 56, p. 626. https://doi.org/10.1007/s10593-020-02712-6

    Article  CAS  Google Scholar 

  4. Kumari, P., Mishra, V.S., Narayana, C., Khanna, A., Chakrabarty, A., and Sagar, R., Sci. Rep., 2020, vol. 10, p. 6660. https://doi.org/10.1038/s41598-020-63377-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gutiérrez, M., Matus, M.F., Poblete, T., Amigo, J., Vallejos, G., and Astudillo, L., J. Pharm. Pharmacol., 2013, vol. 65, p. 1796. https://doi.org/10.1111/jphp.12180

    Article  CAS  PubMed  Google Scholar 

  6. Pallet, K.E., Cramp, S.M., Little, J.P., Veerasekaran, P., Crudace, A.J., and Slater, A.E., Pest Manag. Sci., 2001, vol. 57, p. 133. https://doi.org/10.1002/1526-4998(200102)57:2<

    Article  Google Scholar 

  7. Alletto, L., Benoit, P., Bergheaud, V., and Coquet, Y., Pest Manag. Sci., 2012, vol. 68, p. 610. https://doi.org/10.1002/ps.2304

    Article  CAS  PubMed  Google Scholar 

  8. Raffa, D., Daidone, G., Maggio, B., Schillaci, D., Plescia, F., and Torta, L., Il Farmaco, 1999, vol. 54, p. 90. https://doi.org/10.1016/S0014-827X(98)00108-6

    Article  CAS  PubMed  Google Scholar 

  9. Galenko, E.E., Linnik, S.A., Khoroshilova, O.V., Novikov, M.S., and Khlebnikov, A.F., J. Org. Chem., 2019, vol. 84, p. 11275. https://doi.org/10.1021/acs.joc.9b01634

    Article  CAS  PubMed  Google Scholar 

  10. Titova, Y.A. and Fedorova, O.V., Chem. Heterocycl. Compd., 2020, vol. 56, p. 659. https://doi.org/10.1007/s10593-020-02715-3

    Article  CAS  Google Scholar 

  11. Hu, F. and Szostak, M., Adv. Synthesis Catal., 2015, vol. 357, p. 2583. https://doi.org/10.1002/adsc.201500319

    Article  CAS  Google Scholar 

  12. Bumagin, N.A., Petkevich, S.K., Kletskov, A.V., Alekseyev, R.S., and Potkin, V.I., Chem. Heterocycl. Compd., 2019, vol. 55, p. 508. https://doi.org/10.1007/s10593-019-02492-8

    Article  CAS  Google Scholar 

  13. Praveen, C., Kalyanasundaram, A., and Perumal, P.T., Synlett, 2010, p. 777. https://doi.org/10.1055/s-0029-1219342

  14. Tu, K.N., Hirner, J.J., and Blum, S.A., Org. Lett., 2016, vol. 18, p. 480. https://doi.org/10.1021/acs.orglett.5b03530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, C., Li, J., Zhou, F., Li, C., and Wu, W., J. Org. Chem., 2019, vol. 84, p. 11958. https://doi.org/10.1021/acs.joc.9b01593

    Article  CAS  PubMed  Google Scholar 

  16. Khairnar, P.V., Lung, T.-H., Lin, Y.-J., Wu, C.-Y., Koppolu, S.R., Edukondalu, A., Karanam, P., and Lin, W., Org. Lett., 2019, vol. 21, p. 4219. https://doi.org/10.1021/acs.orglett.9b01395

    Article  CAS  PubMed  Google Scholar 

  17. Johnson, L., Powers, J., Ma, F., Jendza, K., Wang, B., Meredith, E., and Mainolfi, N., Synthesis, 2013, vol. 45, p. 171. https://doi.org/10.1055/s-0032-1317935

    Article  CAS  Google Scholar 

  18. Ning, Y., Otani, Y., and Ohwada, T., J. Org. Chem., 2018, vol. 83, p. 203. https://doi.org/10.1021/acs.joc.7b02573

    Article  CAS  PubMed  Google Scholar 

  19. Kadam, K.S., Gandhi, T., Gupte, A., Gangopadhyay, A.K., and Sharma, R., Synthesis, 2016, vol. 48, p. 3996. https://doi.org/10.1055/s-0035-1561464

    Article  CAS  Google Scholar 

  20. Lai, Z., Li, Z., Liu, Y., Yang, P., Fang, X., Zhang, W., Liu, B., Chang, H., Xu, H., and Xu, Y., J. Org. Chem., 2018, vol. 83, p. 145. https://doi.org/10.1021/acs.joc.7b02483

    Article  CAS  PubMed  Google Scholar 

  21. Hu, M., He, X., Niu, Z., Yan, Z., Zhou, F., and Shang, Y., Synthesis, 2014, vol. 46, p. 510. https://doi.org/10.1055/s-0033-1340470

    Article  CAS  Google Scholar 

  22. Jackowski, O., Lecourt, T., and Micouin, L., Org. Lett., 2011, vol. 13, p. 5664. https://doi.org/10.1021/ol202389u

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi, E. and Togo, H., Synthesis, 2019, vol. 51, p. 3723. https://doi.org/10.1055/s-0039-1690102

    Article  CAS  Google Scholar 

  24. Chen, C. and Cui, S., J. Org. Chem., 2019, vol. 84, p. 12157. https://doi.org/10.1021/acs.joc.9b01430

    Article  CAS  PubMed  Google Scholar 

  25. Kondrashov, E.V. and Shatokhina, N.S., Chem. Heterocycl. Compd., 2019, vol. 55, p. 1228. https://doi.org/10.1007/s10593-019-02606-2

    Article  CAS  Google Scholar 

  26. Bakulev, V.A., Efimov, I.V., Belyaev, N.A., Zhidovinov, S.S., Rozin, Yu.A., Volkova, N.N., Khabarova, A.A., and Elʼtsov, O.S., Chem. Heterocycl. Compd., 2013, vol. 48, p. 1880. https://doi.org/10.1007/s10593-013-1225-1

    Article  CAS  Google Scholar 

  27. Bozhenkov, G.V., Savosik, V.A., Larina, L.I., Klyba, L.V., Zhanchipova, E.R., Mirskova, A.N., and Levkovskaya, G.G., Russ. J. Org. Chem., 2008, vol. 44, p. 1014. https://doi.org/10.1134/S1070428008070129

    Article  CAS  Google Scholar 

  28. Bozhenkov, G.V., Savosik, V.A., Larina, L.I., Klyba, L.V., Zhanchipova, E.R., Mirskova, A.N., and Levkovskaya, G.G., Russ. J. Org. Chem. 2008, vol. 44, p. 1194. https://doi.org/10.1134/S1070428008080150

  29. Rudyakova, E.V., Savosik, V.A., Evstaf’eva, I.T., Kondrashov, E.V., and Levkovskaya, G.G., Russ. J. Org. Chem., 2009, vol. 45, p. 705. https://doi.org/10.1134/S1070428009050108

    Article  CAS  Google Scholar 

  30. Levkovskaya, G.G., Kobelevskaya, V.A., Rudyakova, E.V., Khanh, Q.Ha., Samultsev, D.O., and Rozentsveig, I.B., Tetrahedron, 2011, vol. 67, p. 1844. https://doi.org/10.1016/j.tet.2011.01.028

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Baikal Analytical Center for Collective Use, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Rozentsveig.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, A.V., Kobelevskaya, V.A., Titov, I.D. et al. Synthesis of 5-Chloroisoxazoles Derived from 2,2-Dichlorovinyl Ketones. Russ J Org Chem 56, 1958–1962 (2020). https://doi.org/10.1134/S107042802011010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802011010X

Keywords:

Navigation