Skip to main content
Log in

Fe3O4@SiO2—CPTMS—Guanidine—SO3H-catalyzed One-Pot Multicomponent Synthesis of Polysubstituted Pyrrole Derivatives under Solvent-Free Conditions

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A highly efficient procedure for the one-pot synthesis of polysubstituted pyrrole derivatives by the reaction between of aniline derivatives, β-diketones or β-ketoesters, and β-nitrostyrene derivatives in the presence of Fe3O4@SiO2—CPTMS-guanidine–SO3H as a reusable magnetic nanocatalyst is reported. The magnetic nanocatalyst was prepared and fully characterized by FTIR spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, thermogravimetric analysis, and vibrating sample magnetometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, G.R., Reddy, T.R., Joseph, S.C., Reddy, K.S., Reddy, L.S., Kumar, P.M., Krishna, G.R., Reddy, C.M., Rambabu, D., Kapavarapu, R., Lakshmi, C., Meda, T., Priya, K.K., Parsa, K.V.L., and Pal, M., Chem. Commun., 2011, vol. 47, p. 7779. doi https://doi.org/10.1039/C1CC12321A

    Article  CAS  Google Scholar 

  2. Yavari, I. and Moradi, L., Tetrahedron Lett., 2006, vol. 47, p. 1627. doi https://doi.org/10.1016/j.tetlet.2005.12.112

    Article  CAS  Google Scholar 

  3. Ghabraie, E., Balalaie, S., Bararjanian, M., Bijanzadeh, H.R., and Rominger, F., Tetrahedron, 2011, vol. 67, p. 5415. doi https://doi.org/10.1016/j.tet.2011.05.076

    Article  CAS  Google Scholar 

  4. Xu, H., Li, Y., Xing, M., Jia, J., Han, L., Ye, Q., and Gao, J., Org. Lett., 2015, vol. 17, p. 3690. doi https://doi.org/10.1021/acs.orglett.5b01652

    Article  Google Scholar 

  5. Denny, W.A., Rewcastle, G.W., and Baguley, B.C., J. Med. Chem., 1990, vol. 33, p. 814. doi https://doi.org/10.1021/jm00164a054

    Article  CAS  Google Scholar 

  6. Bürli, R.W., McMinn, D., Kaizerman, J.A., Hu, W., Ge, Y., Pack, Q., Jiang, V., Gross, M., Garcia, M., Tanaka, R., and Moser, H.E., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 1253. doi https://doi.org/10.1016/j.bmcl.2003.12.042

    Article  Google Scholar 

  7. Toja, E., Selva, D., and Schiatti, P., J. Med. Chem., 1984, vol. 27, p. 610. doi https://doi.org/10.1021/jm00371a010

    Article  CAS  Google Scholar 

  8. Lehuede, J., Fauconneau, B., Barrier, L., Qurakow, M., Piriou, A., and Vierfond, J.M., Eur. J. Med. Chem., 1999, vol. 34, p. 991. doi https://doi.org/10.1016/S0223-5234(99)00111-7

    Article  CAS  Google Scholar 

  9. Del Poeta, M., Schell, W.A., Dykstra, C.C., Jones, S., Tidwell, R.R., Czarny, A., Bajic, M., Bajic, M., Kumar, A., Boykin, D., and Perfect, J.R., Antimicrob. Agents Chemother., 1998, vol. 42, p. 2495. doi https://doi.org/10.1128/AAC.42.10.2495

    Article  CAS  Google Scholar 

  10. Alizadeh, A., Rezvanian, A., and Bijanzadeh, H.R., Synthesis, 2008, vol. 5, p. 725. doi https://doi.org/10.1055/s-2008-1032168

    Article  Google Scholar 

  11. Maiti, S., Biswas, S., and Jana, U., J. Org. Chem., 2010, vol. 75, p. 1674. doi https://doi.org/10.1021/jo902661y

    Article  CAS  Google Scholar 

  12. Alizadeh, A., Bagherinejad, A., Moafi, L., and Zhu, L.G., Synlett., 2016, vol. 27, p. 1803. doi https://doi.org/10.1055/s-0035-1561612

    Article  CAS  Google Scholar 

  13. Moradi, L., Piltan, M., and Rostami, H., Chin. Chem. Lett., 2014, vol. 25, p. 123. doi https://doi.org/10.1016/j.cclet.2013.10.009

    Article  CAS  Google Scholar 

  14. Ghorbani-Vaghei, R., Sarmast, N., and Mahmoodi, J., Appl. Organometal. Chem., 2016, vol. 31, p. e3681. doi https://doi.org/10.1002/aoc.3681

    Article  Google Scholar 

  15. Shiri, L., Rahmati, S., Ramezani-Nejad, Z., and Kazemi, M., Appl. Organometal. Chem., 2017, vol. 31, p. e3687. doi https://doi.org/10.1002/aoc.3687

    Article  Google Scholar 

  16. Maleki, A., Chalavand, R., and Firouzi Haji, R., Appl. Organometal. Chem., 2017, vol. 32, p. e3916. doi https://doi.org/10.1002/aoc.3916

    Article  Google Scholar 

  17. Maleki, A. and Nooraie-Yeganeh, N., Appl. Organometal. Chem., 2017, vol. 31, p. e3814. doi https://doi.org/10.1002/aoc.3814

    Article  Google Scholar 

  18. Zheng, X., Luo, S., Zhang, L., and Cheng, J.P., Green Chem., 2009, vol. 11, p. 455. doi https://doi.org/10.1039/B823123K

    Article  CAS  Google Scholar 

  19. Esmaeili, A. and Kakavand, S., C. R. Chim., 2016, vol. 19, p. 936. doi https://doi.org/10.1016/j.crci.2016.02.009

    Article  CAS  Google Scholar 

  20. Ko, S. and Jang, J., Angew. Chem., 2006, vol. 45, p. 7726. doi https://doi.org/10.1002/ange.200602456

    Article  Google Scholar 

  21. Porretta, G., Biava, M., Fioravanti, R., Fischetti, M., Melino, C., Venza, F., Bolle, P., and Tita, B., Eur. J. Med. Chem., 1992, vol. 27, p. 717. doi https://doi.org/10.1016/0223-5234(92)90092-F

    Article  Google Scholar 

  22. Silveira, C.C., Mendes, S.R., Martins, G.M., Schlosser, S.C., Kaufman, T.S., Tetrahedron, 2013, vol. 69, p. 9076. doi https://doi.org/10.1016/j.tet.2013.08.035

    Article  CAS  Google Scholar 

  23. Li, B.L., Li, P.H., Fang, X.N., Li, C.X., Sun, J.L., Mo, L.P., and Zhang, Z.H., Tetrahedron, 2013, vol. 69, p. 7011. doi https://doi.org/10.1016/j.tet.2013.06.049

    Article  CAS  Google Scholar 

  24. Jagadhane, P.B., Jadhav, N.C., Herlekar, O.P., and Telvekar, V.N., Synth. Commun., 2015, vol. 45, p. 2130. doi https://doi.org/10.1080/00397911.2015.1066392

    Article  CAS  Google Scholar 

  25. Jadhav, N.C., Jagadhane, P.B., Patile, H.V., and Telvekar, V.N., Tetrahedron Lett., 2013, vol. 54, p. 3019. doi https://doi.org/10.1016/j.tetlet.2013.04.014

    Article  CAS  Google Scholar 

  26. Matloubi Moghaddam, F., Koushki Foroushani, B., and Rezvani, H.R., RSC. Adv., 2015, vol. 5, p. 18092. doi https://doi.org/10.1039/C4RA09348H

    Article  Google Scholar 

  27. Konkala, K., Chowrasia, R., Manjari, P.S., Domingues, N.L.C., and Katla, R., RSC Adv., 2016, vol. 6, p. 43339. doi https://doi.org/10.1039/C6RA08335H

    Article  CAS  Google Scholar 

  28. Sarkar, S., Bera, K., Maiti, S., Biswas, S., and Jana, V., Synth. Commun., 2013, vol. 43, p. 1563. doi https://doi.org/10.1080/00397911.2011.650273

    Article  CAS  Google Scholar 

  29. Shiri, L., Narimani, H., and Kazemi, M., Appl. Organometal. Chem., 2017, vol. 32, p. e3927. doi https://doi.org/10.1002/aoc.3927

    Article  Google Scholar 

  30. Atashkar, B., Rostami, A., and Tahmasbi, B., Catal. Sci. Technol., 2013, vol. 3, p. 2140. doi https://doi.org/10.1039/C3CY00190C

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the IIam University Research Council for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Shiri.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 8, pp. 1309.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, H., Shiri, L. Fe3O4@SiO2—CPTMS—Guanidine—SO3H-catalyzed One-Pot Multicomponent Synthesis of Polysubstituted Pyrrole Derivatives under Solvent-Free Conditions. Russ J Org Chem 55, 1204–1211 (2019). https://doi.org/10.1134/S1070428019080207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019080207

Keywords

Navigation