Skip to main content
Log in

The Development of Corrosion Inhibitor Used in the Automotive Coolant

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

This review features a brief history of coolant fluids, with a focus on changes to inhibitor and antifreeze usage to enhance the corrosion protection of cooling system components. Additionally, forecasts are made concerning the development trends of coolant technologies, which are required to meet increasingly stringent environmental regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Halderman, J.D., Automotive Technology: Principles, Diagnosis, and Service, US: Pearson, 2011.

    Google Scholar 

  2. Hannigan, H.J., Engine Coolant Testing, 1993, vol. 3, pp. 6–10. https://doi.org/10.1520/STP25153S

    Article  Google Scholar 

  3. Bosen, S.F., Bowles, W.A., Ford, E.A., Perlson, B.D., Antifreezes. Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000.

    Google Scholar 

  4. Hercamp, R., SAE Technical Paper, 1999, ID 01-2824. https://doi.org/10.4271/1999-01-2824

    Article  Google Scholar 

  5. Yang, B., Gershun, A., and Woyciesjes, P., Global Testing of Extended Service Engine Coolants and Related Fluids ASTM STP 1556, 2014, pp. 3–38. https://doi.org/10.1520/STP155620130109

  6. Egawa, H., Mori, Y., and Abel, M.L., Engine Coolant Technologies, 2008, vol.5, pp. 1–7. https://doi.org/10.1520/STP45560S

    Article  Google Scholar 

  7. DeBaun, H.J. and Alverson, F.C., Engine Coolant Technologies, 2008, vol.5, pp. 8–16. https://doi.org/10.1520/STP45561S

    Article  Google Scholar 

  8. Weir, T., Greaney, J., and Backenstrass, F., SAE Technical Paper,1997, ID 971803. https://doi.org/10.4271/971803

  9. Osawa, M., Morita, Y., and Nagashima, T., SAE Technical Paper, 2003, ID 01-2023. https://doi.org/10.4271/2003-01-2023

    Article  Google Scholar 

  10. Hersch, P., Hare, J. B., and Robertson, A., Journal of Applied Chemistry, 1961, vol.11, no. 7, pp 251–265. https://doi.org/10.1002/jctb.5010110705

    Article  CAS  Google Scholar 

  11. Weir, T. and de Ven, P., SAE Technical Paper,1996, ID 960641. https://doi.org/10.4271/960641

    Article  Google Scholar 

  12. US Patent 2726215A, 1955.

  13. France Patent 2489355B3, 1983.

  14. US Patent 4382008A, 1983.

  15. US Patent 4561990A, 1985.

  16. US Patent 4578205A, 1986.

  17. US Patent 4584119A, 1986.

  18. US Patent 4592853A, 1986.

  19. European Patent 0077767B2, 1988.

  20. European Patent 0739965B1, 2002.

  21. Japan Patent 4737585B2, 2011.

  22. Japan Patent 4980534B2, 2012.

  23. ASTM D1384-05(2019), Standard Test Method for Corrosion Test for Engine Coolants in Glassware, ASTM International, West Conshohocken, PA, 2019.

  24. Van de Ven, P. and Maes, J., SAE Technical Paper, 1994, ID 940769.

    Article  Google Scholar 

  25. US Patent 4342596A, 1982.

  26. Patent 4759864A, 1988.

  27. European Patent 0251480B1, 1992.

  28. US Patent 5997763A, 1999.

  29. WIPO (PCT) 2000050532A1, 2000.

  30. European Patent 1087004A1, 2001.

  31. Germany Patent 10163337A1, 2003.

  32. European Patent 1747254A1, 2007.

  33. WIPO (PCT) 2012021204A2, 2012.

  34. US Patent 9051515B2, 2015.

  35. European Patent 2171014B1, 2015.

  36. US Patent 4647392A, 1987.

  37. US Patent 4657689A, 1987.

  38. US Patent 4851145A, 1989.

  39. US Patent 5085791A, 1992.

  40. US Patent 5085793A, 1992.

  41. European Patent 0564721A1, 1993.

  42. European Patent 0479470B1, 1995.

  43. US Patent 6846431B1, 2005.

  44. WIPO (PCT) 2014180886A1, 2014.

  45. US Patent 9328278B2, 2016.

  46. US Patent 9540558B2, 2017.

  47. Japan Patent 6537847B2, 2019.

  48. Darden, J., Triebel, C., Maes, J., and VanNeste, W., SAE Technical Paper, 1990, ID 900804. https://doi.org/10.4271/900804

    Article  Google Scholar 

  49. Van de Ven, P. and Maes, J., SAE Technical Paper, 1994, ID 940498. https://doi.org/10.4271/940498

    Article  Google Scholar 

  50. Pellet, R., Bartley, L., and Hunsicker, D., SAE Technical Paper, 2001, ID 01-1184. https://doi.org/10.4271/2001-01-1184

    Article  Google Scholar 

  51. Hudgens, R., SAE Technical Paper, 1999, ID 01-0130. https://doi.org/10.4271/1999-01-0130

    Article  Google Scholar 

  52. Mercer, W.C., Engine Coolant Testing, 1993, vol. 3, pp. 44–62. https://doi.org/10.1520/STP25156S

    Article  Google Scholar 

  53. Choi SUS. Enhancing Thermal Conductivity of Fluids with Nanoparticles. American Society of Mechanical Engineers (ASME), San Francisco: Fluids Engineering Division (FED), 1995.

  54. Choi, S., Zhang, Z.G., Yu, W., and et al., Appl. Phys. Lett., 2001, vol. 79, pp. 2252–2254. https://doi.org/10.1063/1.1408272

    Article  CAS  Google Scholar 

  55. Erkan, A., Tüccar, G., Tosun, E., et al. SN Appl. Sci., 2021, vol. 3, ID 365. https://doi.org/10.1007/s42452-021-04368-z

    Article  CAS  Google Scholar 

  56. Ahmad, A., Rad, S., Mehdi, S., Goodarz, A., et al., Energy Conversion and Management, 2015, vol. 101, pp. 767–777.

    Article  Google Scholar 

  57. Li, X., Changjun, Z., and Aihua, Q., International Communications in Heat and Mass Transfer, 2016, vol. 77, pp. 159–164.

    Article  CAS  Google Scholar 

  58. Lee, S., Choi, S., Li, S., and Eastman, J.A., J. Heat Transfer, 1999, vol. 121, pp 280–289. https://doi.org/10.1115/1.2825978

    Article  CAS  Google Scholar 

  59. Hussein, M.A., Bakar, R.A., Kadirgama, K., and Sharma, K.V., Int.Commun in Heat and Mass Transf., 2014, vol. 53, pp. 195–202. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.003

    Article  CAS  Google Scholar 

  60. Vajjha, R.S., Das, D.K., and Namburu, P.K., Int. J. Heat and Fluid Flow, 2010, vol. 31, pp. 613–621. https://doi.org/10.1016/j.ijheatfluidflow.2010.02.016

    Article  CAS  Google Scholar 

  61. Jinmao, C. and Jianguang, J., Materials Research Innovations, 2017, vol. 21, no. 3, pp. 177–181. https://doi.org/10.1080/14328917.2016.1198549

    Article  CAS  Google Scholar 

  62. Wu, G., Turcotte, D.E., Dwornick, B.L., et al., Global Testing of Extended Service Engine Coolants and Related Fluids, STP 1556, 2014, pp. 57–70. https://doi.org/10.1520/STP155620130073

    Article  Google Scholar 

  63. Eastman, J.A., Choi, S., Li, S., and et al., Applied Physics Letters, 2001, vol. 78, no. 6, pp. 718–720. https://doi.org/10.1063/1.1341218

    Article  CAS  Google Scholar 

  64. Kouji, I., Satoshi, O. and Keisaku, I., Komat’s Technical Report, 2002, vol. 48, no 149, p. 3.

    Google Scholar 

  65. Chen, J.M., Guan, J.L., Ru, J. Y., and Bo, G., Applied Mechanics and Materials, 2014, vol. 716–717, pp. 130–132. https://doi.org/10.4028/www.scientific.net/AMM.716-717.130

    Article  CAS  Google Scholar 

  66. WIPO (PCT) 2002072728A1, 2002.

Download references

Funding

This article was supported by Vietnam-Russia Tropical Centre. We thank our colleagues who provided insight and expertise that highly assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Van Huy.

Ethics declarations

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huy, V.V., Quang, H.D., Katolik, A. et al. The Development of Corrosion Inhibitor Used in the Automotive Coolant. Russ J Appl Chem 94, 1577–1584 (2021). https://doi.org/10.1134/S1070427221120028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221120028

Keywords:

Navigation