Skip to main content
Log in

Highly Selective MTO Reaction over a Nanosized ZSM-5 Zeolite Modified by Fe via the Low-Temperature Dielectric Barrier Discharge Plasma Method

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Nanosized ZSM-5 zeolites were synthesized by an in situ seed-induced hydrothermal method, and samples modified with an Fe promoter were prepared by the traditional wet impregnation-thermal decomposition and dielectric barrier discharge plasma (DBD) methods, respectively. The physico-chemical properties of the catalysts were studied by XRD, SEM, TEM, BET, XPS, H2-TPR, NH3-TPD and Py-IR techniques. The catalytic performance was eValuated by the methanol-to-olefin (MTO) reaction. The results showed that the acidity of the catalysts, the dispersity of the Fe promoter and the interaction degree with the ZSM-5 zeolite are closely related to product selectivity in the MTO reaction. Compared with the Fe-NZ5 sample prepared by the traditional impregnation-calcination method, the FeD-NZ5 samples prepared by the DBD method exhibited the higher selectivity of C2—C4 light olefins and the lower coke deposition during long-term eValuation (100 h), which can be attributed to the weaker acid strength, more uniform Fe promoter dispersion and strong interaction with the ZSM-5 zeolite. The developed Fe-modified catalysts have high potential for application in the MTO reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tian, P., Wei, Y., Ye, M., and Liu, Z., ACS Catal., 2015, vol. 5, pp. 1922–1938. https://doi.org/10.1021/acscatal.5b00007

    Article  CAS  Google Scholar 

  2. Yang, M., Fan, D., and Wei, Y., Adv. Mater., 2019. https://doi.org/10.1002/adma.201902181

    Article  CAS  Google Scholar 

  3. Chae, H.J., Song, Y.H., and Jeong, K.E., Kim, C.-U, and Jeong, S.-J., J. Phys. Chem. Solids, 2010, vol. 71, pp. 600–603. https://doi.org/10.1016/jjpcs.2009.12.046

    Article  CAS  Google Scholar 

  4. Gao, M., Li, H., and Yang, M., Chem. Eng. J., 2019. https://doi.org/10.1016/j.cej.2018.08.054

    Article  Google Scholar 

  5. Jin, W., Ma, J., and Ma, H., J. Solid State Chem., 2018, vol. 267, pp. 6–12. https://doi.org/10.1016/j.jssc.2018.08.004

    Article  CAS  Google Scholar 

  6. Liu, J., Zhang, C., and Shen, Z., Catal. Commun., 2009, vol. 10, pp. 1506–1509. https://doi.org/10.1016/j.catcom.2009.04.004

    Article  CAS  Google Scholar 

  7. Hadi, N., Niaei, A., and Nabavi, S.R., J. Taiwan Inst. Chem. Eng., 2016, vol. 59, pp. 173–185. https://doi.org/10.1016/j.jtice.2015.09.017

    Article  CAS  Google Scholar 

  8. Yarulina, I., Bailleul, S., and Pustovarenko, A., ChemCatChem, 2016, vol. 8, pp. 3057–3063. https://doi.org/10.1002/cctc.201600650

    Article  CAS  Google Scholar 

  9. Velichkina, L.M., Korobitsyna, L.L., and Ulzii, B., Petrol. Chem., 2013, vol. 53, no. 2, pp. 2–121. https://doi.org/10.1134/S0965544113020126

    Article  Google Scholar 

  10. Gorzin, F. and Yaripour, F., Res. Chem. Intermed., 2019, vol. 45, pp. 261–285. https://doi.org/10.1007/s11164-018-3601-z

    Article  CAS  Google Scholar 

  11. Magomedova, M.V., Peresypkina, E.G., Davydov, I.A., and Khadzhiev, S.N., Petrol. Chem., 2017, vol. 57, no. 12, pp. 12–1043. https://doi.org/10.1134/S0965544117100115

    Google Scholar 

  12. Jiang, X., Su, X., and Bai, X., Micropor. Mesopor. Mat., 2018, vol. 263, pp. 243–250. https://doi.org/10.1016/j.micromeso.2017.12.029

    Article  CAS  Google Scholar 

  13. Rostamizadeh, M. and Yaripour, F., Fuel, 2016, vol. 181, pp. 537–546. https://doi.org/10.1016/j.fuel.2016.05.019

    Article  CAS  Google Scholar 

  14. Wang, Z., Zhang, Y., Neyts, E.C., Cao, C., Zhang, X., Ben, W.-L.J., and Liu, C-J., ACS Catal., 2018, vol. 8, pp. 2093–2110. https://doi.org/10.1021/acscatal.7b03723

    Article  CAS  Google Scholar 

  15. Liu, C., Li, M., Wang, J., Zhou, X., Guo, Q., Yan, J., and Li, Y., Chin. J. Catal., 2016, vol. 37, no. 3, pp. 3–340. https://doi.org/10.1016/S1872-2067(15)61020-8

    Article  Google Scholar 

  16. Di, L., Zhang, X., Lee, B., et al., Plasma Chem. Plasma Process., 2017, vol. 37, pp. 1535–1549. https://doi.org/10.1007/s11090-017-9834-6

    Article  CAS  Google Scholar 

  17. Qi, B., Di, L., Xu, W., and Zhang, X., Lee, B., Lu, P., Ahn, W.-S., and Park, D.-W., J. Mater. Chem. A, 2014, vol. 2, pp. 11885–11890. https://doi.org/10.1039/C4TA02155J

    Article  CAS  Google Scholar 

  18. Zhou, R., Rui, N., Fan, Z., and Liu, C.J., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 22017–22025. https://doi.org/10.1016/j.ijhydene.2016.08.093

    Article  CAS  Google Scholar 

  19. Jiang, Y., Fu, T., Lü, J., and Li, Z., J. Energy Chem., 2013, vol. 22, pp. 506–511. https://doi.org/10.1016/S2095-4956(13)60066-2

    Article  CAS  Google Scholar 

  20. Zhang, K., Kurumov, S.A., Su, X., Snatenkova, Yu.M., Bukina, Z.M., Kolesnichenko, N.V., Wu, W., and Khadzhiev, S.N., Petrol. Chem., 2017, vol. 57, no. 12, pp. 12–1036. https://doi.org/10.1134/S0965544117120179

    Google Scholar 

  21. Cao, X., Zhou, R., Rui, N., Wang, Z., Wang, J., Zhou, X., and Liu, C.-J., Catal. Today, 2017, vol. 297, pp. 219–227. https://doi.org/10.1016/j.cattod.2017.01.042

    Article  CAS  Google Scholar 

  22. Leveneur, J., Waterhouse, G.I., Kennedy, J., Metson, J.B., and Mitchell, D.R.G., J. Phys. Chem. C, 2011, vol. 115, pp. 20978–20985. https://doi.org/10.1021/jp206357c

    Article  CAS  Google Scholar 

  23. You, Y., Chen, S., Li, J., et al., J. Hazard. Mater., 2020. https://doi.org/10.1016/j.jhazmat.2019.121117

    Article  CAS  Google Scholar 

  24. Shi, X., He, H., and Xie, L., Chin. J. Catal., 2015, vol. 36, pp. 649–656. https://doi.org/10.1016/S1872-2067(14)60268-0

    Article  CAS  Google Scholar 

  25. Brandenberger, S., Kröcher, O., Casapu, M., Tissler, A., and Althoff, R., Appl. Catal. B-Environ., 2011, vol. 101, pp. 649–659. https://doi.org/10.1016/j.apcatb.2010.11.006

    Article  CAS  Google Scholar 

  26. Yang, M., Shao, J., Yang, Z., Yang, H., Wang, X., Wu, Z., and Chen, H., J. Anal. Appl. Pyrolysis., 2019, vol. 137, pp. 259–265. https://doi.org/10.1016/j.jaap.2018.12.003

    Article  CAS  Google Scholar 

  27. Bleken, F.L., Chavan, S., Olsbye, U., Boltz, M., Ocampo, F., and Louis, B., Appl. Catal. A-Gen., 2012, vol. 447–448, pp. 178–185. https://doi.org/10.1016/j.apcata.2012.09.025

    Article  Google Scholar 

  28. Yarulina, I., Chowdhury, A.D., Meirer, F., Weckhuysen, B.M., and Gascon, J., Nat. Catal., 2018, vol. 1, pp. 398–411. https://doi.org/10.1038/s41929-018-0078-5

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (no. 21676074), Intergovernmental International Science and Technology Innovation Cooperation Key Project (2018YFE0108800), the Transformation for Science and Technology Achievements in University of Department of Education of Heilongjiang Province (TSTAU-C2018015)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Ethics declarations

The other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Su, X., Maximov, A.L. et al. Highly Selective MTO Reaction over a Nanosized ZSM-5 Zeolite Modified by Fe via the Low-Temperature Dielectric Barrier Discharge Plasma Method. Russ J Appl Chem 93, 137–148 (2020). https://doi.org/10.1134/S1070427220010152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220010152

Keywords

Navigation