Skip to main content
Log in

Calculation of phase behavior and chemical transformations in H2O-NH3-CO2 system using a modified hole quasichemical model

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A technique for calculation of phase equilibria over a wide range of temperatures and pressures for fluid systems, where chemical interactions lead to the formation of ionic species, was developed. A hole quasichemical model was modified to account for chemical reactions and electrostatic interactions in the liquid phase. The densities and dielectric permittivity as function of a solution composition was taken into account in describing the electrostatic contribution to the Gibbs energy (Pitzer approximation) and Born contribution, that is required for thermodynamic consistency of simulation results. A method of assessing the appropriate relationships for mixtures of ammonia-water and ternary solutions was suggested. Calculations of the phase behavior of the H2O-NH3 system in the entire range of concentrations in the temperature interval 373–588 K at pressures up to 200 bar, and also of H2O-NH3-CO2 system containing NH3 to 30 mol% and CO2 up to 14 mol% in the temperature range 373–473 K at pressures to 88 bar gave satisfactory agreement with experimental data. Concentrations of the molecular and ionic individuals in the liquid phase, depending on the overall composition of the mixture were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edwards, T.J., Maurer, G., Newman, J., and Prausnitz, J.M., Am. Inst. Chem. End. J. 1978, vol. 24, pp. 966–976.

    CAS  Google Scholar 

  2. Pawlikowski, E.M., Newman, J., and Prausnitz, J.M., Ind. Eng. Chem. Process Des. Dev. 1982, vol. 21, pp. 764–770.

    Article  CAS  Google Scholar 

  3. Kawazuishi, K. and Prausnitz, J.M., Ind. Eng. Chem. Res. 1987, vol. 26, pp. 1482–1485.

    Article  CAS  Google Scholar 

  4. Müller, G., Bender, E., and Maurer, G., Ber. Bunsenges. Phys. Chem. 1988, vol. 92, pp. 148–160.

    Google Scholar 

  5. Göppert, U. and Maurer, G., Fluid Phase Equilibria. 1988, vol. 41, pp. 153–185.

    Article  Google Scholar 

  6. Bieling, V., Rumpf, B., Strepp, F., and Maurer, G., Fluid Phase Equilibria. 1989, vol. 53, pp. 251–259.

    Article  CAS  Google Scholar 

  7. Kurz, F., Rumpf, B. and Maurer, G., Fluid Phase Equilibria. 1995, vol. 104, pp. 261–275.

    Article  CAS  Google Scholar 

  8. Krop, J., Fluid Phase Equilibria. 1999, vol. 163, pp. 209–229.

    Article  CAS  Google Scholar 

  9. Kuranov, G.L. and Smirnova, N.A., Russian Journal of Physical Chemistry. 2001, vol. 75. Suppl. 1, pp. 170–180.

    Google Scholar 

  10. Sander, B., Fredenslund, A., and Rasmussen, P., Chem. Eng. Sci. 1986, vol. 41, pp. 1171–1182.

    Article  CAS  Google Scholar 

  11. Bernardis, M., Carvoli, G., and Delogu, P., Am. Inst. Chem. End. J. 1989, vol. 35, pp. 314–317.

    CAS  Google Scholar 

  12. Isla, M.A., Irazoqui, H.A., and Genoud, C.M., Industrial a. Eng. Chem. Research. 1993, vol. 32, pp. 2662–2670.

    Article  CAS  Google Scholar 

  13. Pazuki, G.R., Pahlevanzadeh, H., and Mohseni Ahooei, A., Fluid Phase Equilibria. 2006, vol. 242, pp. 57–64.

    Article  CAS  Google Scholar 

  14. Mishina, K., Arai, Y., Watanabe, M., and Nishino, C., Fluid Phase Equilibria. 1989, vol. 46, pp. 103–112.

    Article  Google Scholar 

  15. Smirnova, N.A. and Victorov, A.I., Fluid Phase Equilibria. 1987, vol. 34, pp. 235–263.

    Article  CAS  Google Scholar 

  16. Termodinamika ravnovesiya zhidkost’-par (Thermodynamics of Fluid-Vapor Equilibrium), Morachevskogo, A.G., Ed., Leningrad: Khimiya, 1989.

    Google Scholar 

  17. Kuranov, G.L., Rumpf, B., Maurer, G., and Smirnova, N.A., Fluid Phase Equilibria, 1997, vol. 136, pp. 147–162.

    Article  CAS  Google Scholar 

  18. Clegg, S.L. and Pitzer, S.P., J. Phys. Chem. 1992, vol. 96, pp. 3513–3521.

    Article  CAS  Google Scholar 

  19. Grunwald, E., Thermodynamics of Molecular Species, New York: Wiley, 1997. 323 p.

    Google Scholar 

  20. Raatschen, W., Harvey, A.H., and Prausnitz, J.M., Fluid Phase Equilibria, 1987, vol. 38, pp. 19–25.

    Article  CAS  Google Scholar 

  21. Harvey, A.H. and Prausnitz, J.M., J. of Solution Chem., 1987, vol. 16, pp. 857–861.

    Article  CAS  Google Scholar 

  22. van Bochove, G.H., Krooshof, G.J.P., and de Loos, T.W., Fluid Phase Equilibria, 2000, vol. 171, pp. 45–49.

    Article  Google Scholar 

  23. Putintsev, N.M., Inzh.-Fiz. Zh., 1995, vol. 68, pp. 767–773.

    CAS  Google Scholar 

  24. Tillner-Roth, R., Harms-Watzenberg, F., and Baehr, H.D., DKV-Tagungsbericht., 1993, vol. 20, pp. 167–181.

    Google Scholar 

  25. Lemkowitz, S.M., Goedegebuur, J., and van der Berg, P.J., J. Appl. Chem. Biotechnol., 1971, vol. 21, pp. 229–232.

    CAS  Google Scholar 

  26. Zelenskii, Yu.D., Zh. Khim. Prom-sti, 1937, vol. 14, pp. 1250–1254.

    Google Scholar 

  27. Zawisza, A. and Malesinska, D., J. Chem. Eng. Data, 1981, vol. 26, pp. 388–391.

    Article  CAS  Google Scholar 

  28. Todheide, K. and Franck, E.U., Z. Phys. Chem. N.F., 1963, vol. 37, pp. 387–390.

    Google Scholar 

  29. Dohrn, R., Bünz, A.P., Devlieghere, F., and Thelen, D., Fluid Phase Equilibria, 1993, vol. 83, pp. 149–158.

    Article  CAS  Google Scholar 

  30. Gillespie, P.C. and Wilson, G.M., GPA Res. Rept. RR-48, Tulsa, OK, 1982.

  31. Wiebe, R., Chem. Rev., 1941, vol. 29, p. 475.

    Article  CAS  Google Scholar 

  32. Bradley, D.J. and Pitzer, K.S., J. Phys.Chem. 1979, vol. 83, p. 1599.

    Article  CAS  Google Scholar 

  33. Keyes, F.G. and Kirkwood, J.G., Phys. Rev., 1930, vol. 36, pp. 1570–1575.

    Article  CAS  Google Scholar 

  34. van Itterbeek, A. and de Clippeleier, K., Physica, 1948, vol. 14, pp. 349–356.

    Article  Google Scholar 

  35. Watson, H.E., Proc. of the Royal Soc. of London. Ser. A, 1927, vol. 117, pp. 43–62.

    Article  CAS  Google Scholar 

  36. Perkyns, J.S., Kusalik, P.G., and Patey, G.N., Chem. Phys. Lett., 1986, vol. 129, pp. 258–261.

    Article  CAS  Google Scholar 

  37. Tillner-Roth, R. and Friend, D.G., J. Phys. Chem. Ref. Data, 1998, vol. 27, pp. 45–62.

    Article  CAS  Google Scholar 

  38. Gillespie, P., Wilding, W., and Wilson, G., Am. Inst. Chem. End. Symp Ser., 1987, vol. 83, pp. 97–127.

    CAS  Google Scholar 

  39. Perz-Salado Kamps, A., Rumpf, B., Maurer, G. et al., Ind. Eng. Chem. Res., 2001, vol. 40, pp. 696–706.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.L. Kuranov, N.A. Smirnova, 2010, published in Zhurnal Prikladnoi Khimii, 2010, Vol. 83, No. 2, pp. 222–233.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuranov, G.L., Smirnova, N.A. Calculation of phase behavior and chemical transformations in H2O-NH3-CO2 system using a modified hole quasichemical model. Russ J Appl Chem 83, 219–231 (2010). https://doi.org/10.1134/S1070427210020072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427210020072

Keywords

Navigation