Skip to main content
Log in

Effect of Calix[4]arene as a Hydrophobic Substituent on Proline Catalysis of Direct Asymmetric Aldol Reactions in the Presence of Water

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A new organocatalyst trans-4-hydroxy-L-proline-derived calix[4]arene was synthesized and its catalyst performance for the direct asymmetric aldol reactions between cyclohexanone and different aromatic aldehydes was investigated. The effect of a series of reaction conditions such as solvent, water and additives were evaluated in detail, and it was observed that the addition of water had a big effect on the enantioselectivities. Specifically, high anti-diastereoselectivity (anti/syn = 92 : 8) and high enantioselectivity (ee 88%) were obtained from the reaction between cyclohexanone and 4-fluorobenzaldehyde in the presence of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Yamashita, Y., Yasukawa, T., Yoo, W.J., Kitanosono, T., and Kobayashi, S., Chem. Soc. Rev., 2018, vol. 47, p. 4388. https://doi.org/10.1039/C7CS00824D

    Article  CAS  Google Scholar 

  2. Trost, B.M. and Ito, H., J. Am. Chem. Soc., 2000, vol. 122, 48, p. 12003. https://doi.org/10.1021/ja003033n

    Article  CAS  Google Scholar 

  3. Fessner, W-D., in Modern Aldol Reactions, Mahrwald, R., Ed., Berlin: Wiley-VCH, 2004, p. 201.

  4. Tanaka, A. and Barbas, C.F.III., in: Modern Aldol Reactions, Mahrwald, R., Ed., Berlin: Wiley-VCH, 2004, p. 273.

  5. List, B., in Modern Aldol Reactions, Mahrwald, R., Ed., Berlin: Wiley-VCH, 2004, p. 161.

  6. Aydin, A.E., Russ. J. Org. Chem., 2022, vol. 58, p. 820. https://doi.org/10.1134/S1070428022060100

  7. Yanagisawa, A., in Modern Aldol Reactions, Mahrwald, R., Ed., Berlin: Wiley-VCH, 2004, p. 1.

  8. MacMillan, D.W.C., Nature, 2008, vol. 455, p. 304. https://doi.org/10.1038/nature07367

    Article  CAS  Google Scholar 

  9. List, B., Lerner, R.A., and Barbas, C.F.III., J. Am. Chem. Soc., 2000, vol. 122, p. 2395. https://doi.org/10.1021/JA994280Y

    Article  CAS  Google Scholar 

  10. Mukherjee, S., Yang, J.W., Hoffmann, S., and List, B., Chem. Rev., 2007, vol. 107, p. 5471. https://doi.org/10.1021/cr0684016

    Article  CAS  Google Scholar 

  11. Ahrendt, K.A., Borths, C.J., and MacMillan, D.W.C., J. Am. Chem. Soc., 2000, vol. 122, p. 4243. https://doi.org/10.1021/ja000092s

    Article  CAS  Google Scholar 

  12. Machajewski, T.D. and Wong, C.H., Angew. Chem., Int. Ed., 2000, vol. 39, p. 1352. https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J

    Article  CAS  Google Scholar 

  13. List, B., Acc. Chem. Res., 2004, vol. 37, p. 548. https://doi.org/10.1021/ar0300571

    Article  CAS  Google Scholar 

  14. Hajos, Z.G. and Parrish, D.R., German Patent DE 2102623. 1971.

  15. Agami, C., Levisalles, J., and Puchot, C., J. Chem. Soc., Chem. Commun., 1985, p. 441. https://doi.org/10.1039/C39850000441

  16. Bahmanyar, S. and Houk, K.N., J. Am. Chem. Soc., 2001, vol. 123, p. 12911. https://doi.org/10.1021/ja011714s

    Article  CAS  Google Scholar 

  17. Bahmanyar, S. and Houk, K.N., J. Am. Chem. Soc., 2001, vol. 123, p. 11273. https://doi.org/10.1021/ja011403h

    Article  CAS  Google Scholar 

  18. Clemente, F.R., and Houk, K.N., J. Am. Chem. Soc., 2005, vol. 127, p. 11294. https://doi.org/10.1021/ja0507620

    Article  CAS  Google Scholar 

  19. Clemente, F.R. and Houk, K.N., Angew. Chem., Int. Ed., 2004, vol. 43, p. 5765. https://doi.org/10.1002/ange.200460916

    Article  Google Scholar 

  20. Klussmann, M., White, A.J.R., Armstrong, A., and Blackmond, D.G., Angew. Chem., Int. Ed., 2006, vol. 45, p. 7985. https://doi.org/10.1002/anie.200602520

    Article  Google Scholar 

  21. List, B., Hoang, L., and Martin, H.J., Proc. Nat. Acad. Sci. USA, 2004, vol. 101, p. 5839. https://doi.org/10.1073/pnas.0307979101

    Article  CAS  Google Scholar 

  22. Marquez, C. and Metzger, J.O., Chem. Commun., 2006, p. 1539. https://doi.org/10.1039/B518288C

  23. Bahmanyar, S., Houk, K.N., Martin, H.J., and List, B., J. Am. Chem. Soc., 2003, vol. 125, p. 2475. https://doi.org/10.1021/ja028812d

    Article  CAS  Google Scholar 

  24. Kobayashi, S., Pure Appl. Chem., 2007, vol. 79, p. 235. https://doi.org/10.1351/pac200779020235

    Article  CAS  Google Scholar 

  25. Mase, N., Nakai, Y., Ohara, N., Yoda, H., Takabe, K., Tanaka, F., and Barbas, C.F.III., J. Am. Chem. Soc., 2006, vol. 128, p. 734. https://doi.org/10.1021/ja0573312

    Article  CAS  Google Scholar 

  26. Mase, N., Watanabe, K., Yoda, H., Takabe, K., Tanaka, F., and Barbas, C.F.III., J. Am. Chem. Soc., 2006, vol. 128, p. 4966. https://doi.org/10.1021/ja060338e

    Article  CAS  Google Scholar 

  27. Aratake, S., Itoh, T., Okano, T., Nagae, N., Sumiya, T., Shoji, M., and Hayashi, Y., Chem. Eur. J., 2007, vol. 13, p. 10246. https://doi.org/10.1002/chem.200700363

    Article  CAS  Google Scholar 

  28. Guizzetti, S., Benaglia, M., Raimondi, L., and Celentano, G., Org. Lett., 2007, vol. 9, p. 1247. https://doi.org/10.1021/ol070002p

    Article  CAS  Google Scholar 

  29. Aratake, S., Itoh, T., Okano, T., Usui, T., Shoji, M., and Hayashi, Y., Chem. Commun., 2007, p. 2524. https://doi.org/10.1039/B702559A

  30. Maya, V., Raj, M., and Singh, V.K., Org. Lett., 2007, vol. 9, p. 2593. https://doi.org/10.1021/ol071013l

    Article  CAS  Google Scholar 

  31. Huang, J., Zhang, X., and Armstrong, D.W., Angew. Chem., Int. Ed., 2007, vol. 46, p. 9073. https://doi.org/10.1002/anie.200703606

    Article  CAS  Google Scholar 

  32. Zhao, J.-F., He, L., Jiang, J., Tang, Z., Cun, L.-F., and Gong, L.-Z., Tetrahedron Lett., 2008, vol. 49, p. 3372. https://doi.org/10.1016/j.tetlet.2008.03.131

    Article  CAS  Google Scholar 

  33. Hayashi, Y., Angew. Chem., 2006, vol. 118, p. 8281. https://doi.org/10.1002/ange.200603378

    Article  Google Scholar 

  34. Blackmond, D.G., Armstrong, A., Coombe, V., and Wells, A., Angew. Chem., 2007, vol. 46, p. 3798. https://doi.org/10.1002/anie.200604952

    Article  CAS  Google Scholar 

  35. Hayashi, Y., Sumiya, T., Takahashi, J., Gotoh, H., Urishima, T., and Shoji, M., Angew Chem, Int. Ed., 2006, vol. 45, p. 958. https://doi.org/10.1002/anie.200502488

    Article  CAS  Google Scholar 

  36. Emma, M.C., Tamburrini, A., Martinelli, A., Lombardo, M., Quintavalla, A., and Trombini, C., Catalysts, 2020, vol. 10, p. 649. https://doi.org/10.3390/catal10060649

    Article  CAS  Google Scholar 

  37. Obregon, A., Milán, M., and Juaristi, E., Org. Lett., 2017, vol. 19, p. 1108. https://doi.org/10.1021/acs.orglett.7b00129

    Article  CAS  Google Scholar 

  38. Hayashi, Y., Aratake, S., Okano, T., Takahashi, J., Sumiya, T., and Shoji, M., Angew. Chem., Int. Ed., 2006, vol. 45, p. 5527. https://doi.org/10.1002/anie.200601156

  39. Giacalone, F., Gruttadauria, M., Agrigento, P., Meo, P.L., and Noto, R., Eur. J. Org. Chem., 2010, p. 5696. https://doi.org/10.1002/ejoc.201000913

  40. An, Y.-J., Zhang, Y.-X., Wua, Y., Liu, Z.-M., Pi, C., and Tao, J.-C., Tetrahedron: Asymmetry, 2010, vol. 21, p. 688. https://doi.org/10.1016/j.tetasy.2010.04.019

    Article  CAS  Google Scholar 

  41. Eymur, S., Taşcı, E., Uyanık, A., and and Yılmaz, M., Turk. J. Chem., 2020, vol. 44, p. 1278. https://doi.org/10.3906/kim-2003-36

    Article  CAS  Google Scholar 

  42. Eymur, S., Akceylan, E., Sahin, O., Uyanik, A., and Yilmaz, M., Tetrahedron, 2014, vol.70, p. 4471. https://doi.org/10.1016/j.tet.2014.05.034

    Article  CAS  Google Scholar 

  43. Uyanik, A., Bayrakci, M., Eymur, S., and Yilmaz, M., Tetrahedron, 2014, vol. 70, p. 9307. https://doi.org/10.1016/j.tet.2014.10.063

    Article  CAS  Google Scholar 

  44. Akceylan, E., Uyanik, A., Eymur, S., Sahin, O., and Yilmaz, M., Appl. Catal. (A), 2015, vol. 499, p. 205. https://doi.org/10.1016/j.apcata.2015.04.018

    Article  CAS  Google Scholar 

  45. Sahin, O., Eymur, S., Uyanik, A., Akceylan, E., and Yilmaz, M., Polycyclic Aromat. Compd., 2018, vol. 38, p. 168. https://doi.org/10.1080/10406638.2016.1176058

    Article  CAS  Google Scholar 

  46. Shabir, G., Arif, M., Saeed, A., and Hussain, G., Russ. J. Gen. Chem., 2019, vol. 89, p. 813. https://doi.org/10.1134/S1070363219040285

  47. Burilov, V.A., Mironova, D.A., Grygoriev, I.A., Valiyakhmetova, A.M., Solovieva, S.E., and Antipin, I.S., Russ. J. Gen. Chem., 2020, vol. 90, p. 99. https://doi.org/10.1134/S1070363220010156

    Article  CAS  Google Scholar 

  48. Joseph, R., and Rao, C.P., Chem. Rev., 2011, vol. 111, p. 4658. https://doi.org/10.1021/cr1004524

    Article  CAS  Google Scholar 

  49. Gutsche, C.D., and Iqbal, M., Org. Syn., 1990, vol. 68, p. 234. https://doi.org/10.15227/orgsyn.068.0234

    Article  CAS  Google Scholar 

  50. Collins, E.M., McKervey, M.A., Madigan, E., Moran, M.B., Owens, M., Ferguson, G., and Harris, S.J., J. Chem. Soc., Perkin Trans. 1, 1991, vol.12, p. 3137. https://doi.org/10.1039/P19910003137

    Article  Google Scholar 

  51. Hoang, L., Bahmanyar, S., Houk, K.N., and List, B., J. Am. Chem. Soc., 2003, vol. 125, p. 16. https://doi.org/10.1021/ja028634o

  52. Tang, Z., Jiang, F., Cui, X. L., Gong, Z., Mi, A.Q., Jiang, Y.Z., and Wu, Y.D., Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, p. 5755. https://doi.org/10.1073/pnas.0307176101

  53. Lam, Y.H., Houk, K.N., Scheffler, U., and Mahrwald, R., J. Am. Chem. Soc., 2012, vol.134, p. 6286. https://doi.org/10.1021/ja2118392

  54. Fu, A.P., Zhao, C.Y., Li, H.L., Tian, F.H., Yuan, S.P., Duan, Y.B., and Wang, Z.H., J. Phys. Chem. A, 2013, vol. 117, p. 2862. https://doi.org/10.1021/jp3126363

    Article  CAS  Google Scholar 

  55. Armstrong, A., Boto, R.A., Dingwall, P., Contreras-Garcia, J., Harvey, M.J., Masona, N.J., and Rzepa, H.S., Chem. Sci., 2014, vol. 5, p. 2057. https://doi.org/10.1039/C3SC53416B

  56. Allemann, C., Gordillo, R., Clemente, F.R., Cheong, P.H.Y., and Houk, K.N., Acc. Chem. Res., 2004, vol. 37, p. 558. https://doi.org/10.1021/ar0300524

    Article  CAS  Google Scholar 

  57. Fu, A.P., List, B., and Thiel, W., J. Org. Chem., 2006, vol.71, p. 320. https://doi.org/10.1021/jo052088a

    Article  CAS  Google Scholar 

  58. Arino, J.R., Carvajal, M.A., Chaumont, A., and Masia, M., Chem. Eur. J., 2012, vol. 18, p. 15868. https://doi.org/10.1002/chem.201200007

  59. Bahmanyar, S., Houk, K.N., Martin, H.J., and List, B., J. Am. Chem. Soc., 2003, vol. 125, p. 2475. https://doi.org/10.1021/ja028812d

    Article  CAS  Google Scholar 

  60. Gutsche, C.D., Dhawan, B., No, K.H., and Muthukrishnan, R., J. Am. Chem. Soc., 1981, vol. 103, p. 3782. https://doi.org/10.1021/ja00403a028

    Article  CAS  Google Scholar 

  61. D’Elia, V., Zwicknagl, H., and Reiser., O., J. Org. Chem., 2008, vol. 73, p. 3262. https://doi.org/10.1021/jo800168h

  62. Chen, F., Huang, S., Zhang, H., Liu, F., and Peng. Y., Tetrahedron, 2008, vol. 64, p. 9585. https://doi.org/10.1016/j.tet.2008.07.051

  63. Maya, V., Raj, M., and Singh., V.K., Org. Lett., 2007, vol. 9, p. 2593. https://doi.org/10.1021/ol071013l

  64. Fu, S.D., Fu, X.K., Zhang, S.P., Zou, X.C., and Wu, X.J., Tetrahedron: Asym., 2009, vol. 20, p. 2390. https://doi.org/10.1016/j.tetasy.2009.09.019

Download references

Funding

Financial supports by The Scientific and Technological Research Council of Türkiye (Grant no. TBAG-112T349), and Scientific Research Projects Foundation of Selcuk University (SUBAP) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Uyanik or M. Yilmaz.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyanik, A., Sahin, O., Akceylan, E. et al. Effect of Calix[4]arene as a Hydrophobic Substituent on Proline Catalysis of Direct Asymmetric Aldol Reactions in the Presence of Water. Russ J Gen Chem 92, 2390–2399 (2022). https://doi.org/10.1134/S107036322211024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322211024X

Keywords:

Navigation