Skip to main content
Log in

Application of Bader’s atoms in molecules theory to the description of coordination bonds in the complex compounds of Ca2+ and Mg2+ with methylidene rhodanine and its anion

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

In the framework of Bader’s atoms in molecules theory a complete analysis of the distribution function of electron density in molecules of complexes of Ca2+ and Mg2+ with methylidene rhodanine and its anion was carried out. The role of mutual polarization of the metal cation and the ligand in the formation of coordination bonds was demonstrated. The accumulation of electron density in the interatomic space of coordination bonds is assumed to be a consequence of the deformation of the ligand electron shell under the influence of the cation electric field. Based on the magnitude and sign of the Laplacian and the electron energy density at the critical points of coordination bonds the interactions were classified the in terms of the atoms in molecules theory. The energy of the coordination bonds was evaluated using the Espinoza’s formula. The stability of metal-containing rings was considered basing on the values of the bond ellipticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lesyk, R.B., Zimenkovsky, B.S., and Troc’ko, N.Y., Ukrainica Bioorganica Acta, 2004, vol. 1, nos. 1–2, p. 29.

    CAS  Google Scholar 

  2. Fabretti, A.C., Franchini, G.C., and Peyronel, G., Transition Met. Chem., 1978, vol. 3, no. 1, p. 355.

    Article  CAS  Google Scholar 

  3. Fabretti, A.C. and Peyronel, G., Transition Met. Chem., 1977, vol. 2, no. 1, p. 224.

    Article  CAS  Google Scholar 

  4. Fabretti, A.C., Peyronel, G., and Franchini, G.C., Transition Met. Chem., 1978, vol. 3, no. 1, p. 125.

    Article  CAS  Google Scholar 

  5. Fabretti, A.C. and Peyronel, G., Transition Met. Chem., 1977, vol. 2, no. 1, p. 207.

    Article  CAS  Google Scholar 

  6. Tang, E., Yang, G., and Yin, J., Spectrochim. Acta (A)., 2003, vol. 59, no. 3, p. 651.

    CAS  Google Scholar 

  7. Loncharich, R.J., Nissen, J.S., and Boyd, D.B., Struct. Chem., 1996, vol. 7, no. 1, p. 37.

    Article  CAS  Google Scholar 

  8. Baryshnikov, G.V., Minaev, B.F., and Minaeva, V.A., Zh. Obshch. Khim., 2011, vol. 81, no. 3, p. 481.

    Google Scholar 

  9. Irvine, M.W., Patrick, G.L., Kewney, J., Hastings, S.F., and MacKenzie, S.J., Bioorg. & Med. Chem. Lett., 2008, vol. 18, no. 6, p. 2032.

    Article  CAS  Google Scholar 

  10. Boyd, D.B., J. Mol. Struct.: Theochem., 1997, vol. 401, no. 3, p. 227.

    Article  CAS  Google Scholar 

  11. Bader, R.W.F., Atoms in Molecules. A Quantum Theory, Oxford: Calendon Press, 1990.

    Google Scholar 

  12. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.

    Article  CAS  Google Scholar 

  13. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, no. 2, p. 785.

    CAS  Google Scholar 

  14. Francl, M.M., Petro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., and Pople, J.A., J. Chem. Phys., 1982, vol. 77, no. 7, p. 3654.

    Article  CAS  Google Scholar 

  15. Bader, R.F.W., Acc. Chem. Res., 1985, vol. 18, no. 1, p. 9.

    Article  CAS  Google Scholar 

  16. Bader, R.F.W., Chem. Rev., 1991, vol. 91, no. 5, p. 893.

    Article  CAS  Google Scholar 

  17. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomeri, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S, Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Peters-son, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., GAUSSIAN 03, Revision, C.02, Gaussian, Inc., Wallingford, CT, 2004.

    Google Scholar 

  18. Keith, T.A., AIMAll (Version 10.07.25); www.aim.tkgristmill.com, 2010.

  19. Abramov, Yu.A., Acta Crystallogr. (A), 1997, vol. 53, no. 3, p. 264.

    Google Scholar 

  20. Bader, R.F.W. and Essen, H., J. Chern. Phys., 1984, vol. 80, no. 5, p. 1943.

    Article  CAS  Google Scholar 

  21. Bader, R.F.W., Slee, T.S., Cremer, D., and Kraka, E., J. Am. Chem. Soc., 1983, vol. 105, no. 15, p. 5061.

    Article  CAS  Google Scholar 

  22. Cremer, D. and Kraka, E., Croat. Chem. Acta., 1984, vol. 57, no. 6, p. 1259.

    Google Scholar 

  23. Firme, C.L., Antunes, O.A.C., and Esteves, P.M., Chem. Phys. Lett., 2009, vol. 468, nos. 4–6, p. 129.

    Article  CAS  Google Scholar 

  24. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, nos. 3–4, p. 170.

    Article  CAS  Google Scholar 

  25. Borissova, A.O., Korlyukov, A.A., Antipin, M.Yu., and Lyssenko, K.A., J. Phys. Chem. (A), 2008, vol. 112, no. 46, p. 11519.

    Article  CAS  Google Scholar 

  26. Puntus, L.N., Lyssenko, K.A., Antipin, M.Yu., and Bünzli, J.-C.G., Inorg. Chem., 2008, vol. 47, no. 23, p. 11095.

    Article  CAS  Google Scholar 

  27. Lysenko, K.A., Antipin, M.Yu., and Khrustalev, B.H., Izv. Akad. Nauk, Ser. Khim., 2001, vol. 50, no. 9, p. 1465.

    Google Scholar 

  28. Bushmarinov, I.S., Lysenko, K.A., and Antipin, M.Yu., Usp. Khim., 2009, vol. 78, no. 4, p. 307.

    Article  Google Scholar 

  29. Nelyubina, Yu.V., Antipin, M.Yu., and Lysenko, K.A., Usp. Khim., 2010, vol. 79, no. 3, p. 195.

    Article  Google Scholar 

  30. Macchi, P. and Sironi, A., Coord. Chem. Rev., 2003, vols. 238–239, p. 383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Baryshnikov.

Additional information

Original Russian Text © G.V. Baryshnikov, B.F. Minaev, V.A. Minaeva, A.T. Podgornaya, H. Ågren, 2012, published in Zhurnal Obshchei Khimii, 2012, Vol. 82, No. 7, pp. 1153–1162.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baryshnikov, G.V., Minaev, B.F., Minaeva, V.A. et al. Application of Bader’s atoms in molecules theory to the description of coordination bonds in the complex compounds of Ca2+ and Mg2+ with methylidene rhodanine and its anion. Russ J Gen Chem 82, 1254–1262 (2012). https://doi.org/10.1134/S1070363212070122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363212070122

Keywords

Navigation