Skip to main content
Log in

Electrorheological fluids

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Advances in one of the most promising fields of the chemistry of smart materials, specifically, electrorheological fluids are considered. The electrorheological effect and the structure and properties of electrorheological fluids are described. Modern views on the nature of the electrorheological effect are considered. The review focuses on the application of nanomaterials as the disperse phases in electrorheological fluids. Recent avances in the sol-gel synthesis of nanostructured colloid systems and the electrorheological characteristics of their based liquid systems are considered. Certain aspects of practical application of electrorheological fluids are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US Patent 2417850, 1947.

  2. Winslow, W.M., J. Appl. Phys., 1949, vol. 20, pp. 1137–1140.

    Article  CAS  Google Scholar 

  3. Korobko, E.V., Elektrostrukturirovannye zhidkosti: osobennosti gidromekhaniki i vozmozhnosti ispol’-zovaniya (Electrorheological Fluids: Hydromechanics and Application), Minsk: ITMO AN Belarusi, 1996

    Google Scholar 

  4. Elektroreologicheskii effect (Electrorheological Effect), Lykova, A.V., Ed., Minsk: Nauka i Tekhnika, 1972.

    Google Scholar 

  5. Shul’man, Z.P., Korobko, E.V., and Levin, M.L., Electroreologicheskie zhidkosti, sostav i osnovnye svoistva (Electrorheological Fluids), Preprint no. 4 ITMO NANB. Minsk: ITMO NANB, 2001.

    Google Scholar 

  6. Derjaguin, B.V., Dukchin, S.S., and Shilov, V.N., Adv. Colloid Interface Sci., 1980, vol. 13, pp. 141–150.

    Article  Google Scholar 

  7. Trapeznikov, A.A., Petrzhik, G.G., and Chertkova, O.A., Kolloid. Zh., 1981, vol. 33, pp. 1134–1137.

    Google Scholar 

  8. Block, H. and Kelly, J.P., J. Phys. D: Appl. Phys., 1988, vol. 21, p. 1661.

    Article  CAS  Google Scholar 

  9. Conrad, H., MRS Bull., 1998, vol. 23, no. 8, pp. 35–42.

    CAS  Google Scholar 

  10. Gast, A.P. and Zukoski, C.F., Adv. Colloid Interface Sci., 1989, vol. 30, pp. 153–202.

    Article  CAS  Google Scholar 

  11. Hao, T., Adv. Mater., 2001, vol. 13, pp. 1847–1852.

    Article  CAS  Google Scholar 

  12. Lampe, D., Materials Database on Commercially Available Electro- and Magnetorheological Fluids (ERF and MRF), http://www.tu-Dresden.de/mwilr/lampe/HAUENG.HTM, updated on 01/30/1997.

  13. Wen, W., Zheng, D.W., and Tu, K.N., J. Appl. Phys., 1999, vol. 85, no. 1, pp. 530–533.

    Article  CAS  Google Scholar 

  14. Deinega, Yu.F. and Vinogradov, G.V., Rheol. Acta, 1984, vol. 23, p. 636.

    Article  CAS  Google Scholar 

  15. GB Patent 2153372, 1985.

  16. Wen, W., Huang, X., and Sheng, P., Soft Matter., 2008, vol. 4, pp. 200–210.

    Article  CAS  Google Scholar 

  17. Klass, D.L. and Martinek, T.W., J. Appl. Phys., 1967, vol. 38, pp. 67–74.

    Article  CAS  Google Scholar 

  18. Klass, D.L. and Martinek, T.W., Ibid., 1967, vol. 38, pp. 75–80.

    Article  CAS  Google Scholar 

  19. Weiss, K.D., Carlson, J.D., and Coulter, J.P., J. Intell. Mater. Sys. Struct., 1993, vol. 4, pp. 13–34.

    Article  Google Scholar 

  20. Block, H. and Kelly J.P., J. Phys. D.: Appl. Phys., 1988, vol. 21, p. 1661.

    Article  CAS  Google Scholar 

  21. Stangroom, J.E., Phys. Technol., 1983, vol. 14, pp. 290–296.

    Article  CAS  Google Scholar 

  22. See, H., Tamura, H., and Doi, M., J. Phys. D: Appl. Phys., 1993, vol. 26, pp. 746–752.

    Article  CAS  Google Scholar 

  23. Tamura, H., See, H., and Doi, M., Ibid., 1993, vol. 26, pp. 1181–1187.

    Article  CAS  Google Scholar 

  24. Kim, Y.D., J. Colloid Interface Sci., 2001, vol. 236, pp. 225–232.

    Article  CAS  Google Scholar 

  25. Kim, Y.D. and Nam, S.W., Ibid., 2004, vol. 269, pp. 205–210.

    Article  CAS  Google Scholar 

  26. Petrzhik, G.G. Chertkova, O.A., and Trapeznikov, A.A., Dokl. Akad. Nauk SSSR, 1980, vol. 253, pp. 173–175.

    CAS  Google Scholar 

  27. Lee, H.J., Chin, B.D., Yang, S.M., and Park, O.O., J. Colloid Interface Sci., 1998, vol. 206, pp. 424–438.

    Article  CAS  Google Scholar 

  28. Kim, J.W., Kim, C.A., Choi, H.J., and Choi, S.B., Korea-Australia Rheology J., 2006, vol. 18, no. 1, pp. 25–30.

    Google Scholar 

  29. Adriani, P.M. and Gast, A.P., Phys. Fluids, 1988, vol. 31, pp. 2757–2768.

    Article  CAS  Google Scholar 

  30. Klingenberg, D.J., Van Frank, S., and Zukoski, C.F., J. Chem. Phys., 1991, vol. 94, pp. 6160–6169.

    Article  CAS  Google Scholar 

  31. Chen, Y.A., Sprecher, F., and Conrad, H., J. Appl. Phys., 1991, vol. 70, pp. 6796–6803.

    Article  CAS  Google Scholar 

  32. Davis, L.C., Ibid., 1992, vol. 72, pp. 1334–1340.

    Article  CAS  Google Scholar 

  33. Davis, L.C., Appl. Phys. Lett., 1992, vol. 60, pp. 319–321.

    Article  Google Scholar 

  34. Davis, L.C., J. Appl. Phys., 1993, vol. 73, pp. 680–683.

    Article  CAS  Google Scholar 

  35. Anderson, R.A., Langmuir, 1994, vol. 10, pp. 2917–2928.

    Article  CAS  Google Scholar 

  36. Rankin, P.J. and Klingenberg, D.J., J. Rheol., 1998, vol. 42, no. 3, pp. 639–656.

    Article  CAS  Google Scholar 

  37. Conrad, H. and Wu, C.W., J. Phys. D: Appl. Phys., 1997, vol. 30, p. 2634.

    Article  Google Scholar 

  38. Klingenberg, D.J., MRS Bull., 1998, vol. 23, no. 8, pp. 103–112.

    Google Scholar 

  39. Foulc, J.N., Atten, P., and Felici, N., J. Electrostatics, 1993, vol. 33, p. 103.

    Article  Google Scholar 

  40. Davis, L.C., J. Appl. Phys., 1992, vol. 72, no. 4, pp. 1334–1340.

    Article  CAS  Google Scholar 

  41. Atten, P., Foulc, J.N., and Felici, N., Int. J. Mod. Phys. B, 1994, vol. 8, pp. 2731–2745.

    Article  CAS  Google Scholar 

  42. Wu, C.W. and Conrad, H., J. Phys. D: Appl. Phys., 1996, vol. 29, p. 3147.

    Article  CAS  Google Scholar 

  43. Felici, N., Foulc, J.N., and Atten, P., Proc. 4th Int. Conf. on ER Fluids Mechanisms, Singapore: World Scientific, 1994, pp. 139–152.

    Google Scholar 

  44. Felici, N.J., J. Electrostatics, 1997, vols. 40/41, pp. 567–572.

    Article  Google Scholar 

  45. Parthasarathy, M. and Klingenberg, D.G., Mater. Sci. Eng., 1996, vol. 17, pp. 57–103.

    Article  Google Scholar 

  46. Wang, X. and Gordaninejad, F., J. Intel. Mater. Sys. Struct., 1999, vol. 10, pp. 601–608.

    Article  Google Scholar 

  47. Cho, M.S., Choi, H.J., and Chon, M.S., Polymer, 2005, vol. 46, p. 11484.

    Article  CAS  Google Scholar 

  48. Bonnecaze, R.T. and Brady, J.F., J. Rheol., 1992, vol. 36, pp. 73–115.

    Article  CAS  Google Scholar 

  49. Shen, R., Wang, X.Z., Lu, Y., Wen, W.J., Sun, G., and Lu, K.Q., J. Appl. Phys., 2007, vol. 102, pp. 024106(3).

    Google Scholar 

  50. Kollias A., Dimarogonas D. J. Intell. Mater. Sys. Struct., 1993, vol. 4, pp. 519–526.

    Article  Google Scholar 

  51. Choi Y.T., Cho J.U., Choi S.B., and Wereley N.M., Smart Mater. Struct., 2005, vol. 14, pp. 1025–1036.

    Article  Google Scholar 

  52. Kraev, A.S., Agafonov, A.V., Nefedova, T.A., et al., Izv. Vyssh. Uchebn. Zaved.: Khim. Khim. Tekhnol., 2007, vol. 50, no. 6, pp. 35–39.

    CAS  Google Scholar 

  53. US Patent 5445759, 1995.

  54. Tao, R., Zhang, X., Tang, X., and Anderson, P., Phys. Rev. Lett., 1999, vol. 83, pp. 5575–5578.

    Article  CAS  Google Scholar 

  55. Choi, H.J., Kim, T.W., Cho, M.S., Kim, S.G. and Jhon, M.S., Eur. Polym. J., 1997, vol. 33, pp. 699–703.

    Article  CAS  Google Scholar 

  56. Goodwin, J.W., Markham, G.M., and Vinent, B., J. Phys. Chem. B, 1997, vol. 101, pp. 1961–1967.

    Article  CAS  Google Scholar 

  57. Cho, M.S., Choi, H.J., and To, K., Macromol. Rapid Commun., 1998, vol. 19, pp. 271–273.

    Article  CAS  Google Scholar 

  58. Kim, S.G., Kim, J.W., Jang, W.H., et al., Polymer, 2001, vol. 42, p. 5005.

    Article  CAS  Google Scholar 

  59. Kim, D-H. and Kim, Y.D., J. Ind. Eng. Chem., 2007, vol. 13, no. 6, p. 879.

    CAS  Google Scholar 

  60. Yoon, D.J. and Kim, Y.D., J. Colloid Interface Sci., 2006, vol. 303, pp. 573–578.

    Article  CAS  Google Scholar 

  61. Yoon, D.J. and Kim, Y.D., J. Mater. Sci., 2007, vol. 42, pp. 5534–5538.

    Article  CAS  Google Scholar 

  62. Fang, F.F. and Choi, H.J., J. Ind. Eng. Chem., 2006, vol. 12, no. 6, pp. 843–845.

    CAS  Google Scholar 

  63. Nefedova, T.A., Agafonov A.V., et al., Mekh. Kompoz. Mater.Konstrukts., 2006, vol. 12, no. 3, pp. 391–406.

    CAS  Google Scholar 

  64. Shang, Y., Ma, S., Li, J., Li, M., Wang, J., and Zhang, S., J. Mater. Sci. Technol., 2006, vol. 22, no. 4, pp. 572–576.

    Google Scholar 

  65. Yin, J. and Zhao, X., Nanotechnology, 2006, vol. 17, pp. 192–196.

    Article  CAS  Google Scholar 

  66. Kraev, A.S., Agafonov, A.V., Davydova, O.I., et al., Kolloid. Zh., 2007, vol. 69, no. 5, pp. 661–667.

    Google Scholar 

  67. Zhao, X.P. and Duan, X., Mater. Lett., 2002, vol. 54, pp. 348–351.

    Article  CAS  Google Scholar 

  68. Yin, Y. and Zhao, X.J., Mater. Chem., 2003, vol. 13, pp. 689–695.

    Article  CAS  Google Scholar 

  69. Ma, S.Z., Liao, F.H., Li, S.X., Xu, M.Y., Li, J.R., Zhang, S.H., Chen, S.M., Huang, R.L., and Gao, S., Ibid., 2003, vol. 13, pp. 3096–3102.

    Article  CAS  Google Scholar 

  70. Liao, F.H., Zhang, L., Li, J-R., Xu, G., Li, G-B., Zhang, S.H., and Gao, S., J. Solid State Chem., 2003, vol. 176, pp. 273–278.

    Article  CAS  Google Scholar 

  71. Wu, Q., Zhao, B.Y., Chen, L.S., and Hu, K.A., Scr. Mater., 2004, vol. 50, pp. 635–639.

    Article  CAS  Google Scholar 

  72. Zhang, Y., Lu, K., Rao, G., Tian, Y., Zhang, S., and Liang, J., Appl. Phys. Lett., 2002, vol. 80, no. 5, pp. 888–890.

    Article  CAS  Google Scholar 

  73. Wen, W., Huang, X., Yang, S., Lu, K., and Sheng, P., Nature Materials, 2003, no. 2, pp. 727.

  74. Huang, X., Wen, W., Yang, S., and Sheng, P., Solid State Commun., 2006, vol. 139, pp. 581–588.

    Article  CAS  Google Scholar 

  75. Gong, X., Wu, J., Huang, X., Wen, W., and Sheng, P., Nanotechnology, 2008, vol. 19, p. 165602(7).

    Google Scholar 

  76. Shen, C., Wen, W., Yang, S., and Sheng, P., J. Appl. Phys., 2006, vol. 99, p. 106104(3).

    Google Scholar 

  77. Qiao, Y., Yin, J., and Zhao, X., Smart Mater. Struct., 2007, vol. 16, p. 332.

    Article  CAS  Google Scholar 

  78. Kenaley, G.L. and Cutkosky, M.R., Proc. IEEE Int. Conf. on Robotics and Automation, Scottsdale, AR, 1989, pp. 132–136.

  79. Taylor, P.M., Hosseini-Sianaki, A., and Varley, C.J., Int. J. Mod. Phys. B, 1996, vol. 10, p. 3011.

    Article  CAS  Google Scholar 

  80. Sakaguchi, M. and Furusho, J., Proc. IEEE Int.Conf. on Robotics and Automation, Leuven, Belgium, 1998, pp. 2586–2590.

  81. Liu, Y., Davidson, R., and Taylor, P., Smart Mater. Struct., 2005, vol. 14, pp. 1563–1568.

    Article  Google Scholar 

  82. Mavroidis, C, Pfeiffer, C., Celestino, J., and Bar-Cohen, Y., Proc. ASME Mechanisms and Robotics Conf., Baltimore, MD, 2000, p. DETC2000/MECH–14121.

  83. Böse, H., Berkemeier, J., and Trendler, A., Proc. ACTUATOR Conf., Bremen, Germany, 2000, pp. 563–566.

  84. Han, Y-M. and Choi, S-B., Smart Mater. Struct., 2006, vol. 15, p. 1438.

    Article  Google Scholar 

  85. Choi, S.B., Lee, T.H., Lee, Y.S., and Han, M.S., Ibid., 2005, vol. 14, p. 1483.

    Article  Google Scholar 

  86. Bitman, L., Choi, Y.T., et al., Ibid., 2005, vol. 14, pp. 237–246.

    Article  Google Scholar 

  87. Chonan, S., Tanaka, M., et al., Ibid., 2004, vol. 13, pp. 1195–1202.

    Article  Google Scholar 

  88. Wereley, N.M., Lindler, J., Rosenfeld, N., and Choi, Y-T., Ibid., 2004, vol. 13, pp. 743–752.

    Article  Google Scholar 

  89. Nikolaev, Yu.I., Binshtok, A.E., Efremov, V.L., Korobko, E.V., Levin, M.L., and Bilyk, V.A., Avtomob. Prom-st’, 2005, no. 11, pp. 19–22.

  90. Chu, X., Qiu, H., Li, L., and Gui, Z., Smart Mater. Struct., 2004, vol. 13, pp. N51–N56.

    Article  Google Scholar 

  91. Niu, X., Liu, L., Wen, W., and Sheng, P., Phys. Rev. Lett., 2006, vol. 97, p. 044501.

    Article  Google Scholar 

  92. Liu, L., Niu, X., Wen, W., and Sheng, P., Appl. Phys. Lett., 2006, vol. 88, p. 173505.

    Article  Google Scholar 

  93. Korobko, E.V., Bilyk, V.A., Korobko, O.A., Mardosevich, M.I., Basinyuk, V.A., and Mardosevich, E.I., Vestn. Polotsk. Gos. Univ., Ser. V, 2005, no. 12, pp. 94–97.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Agafonov.

Additional information

Original Russian Text © A.V. Agafonov, A.G. Zakharov, 2010, published in Rossiiskii Khimicheskii Zhurnal, 2010, Vol. 53, No. 2, pp. 15–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agafonov, A.V., Zakharov, A.G. Electrorheological fluids. Russ J Gen Chem 80, 567–575 (2010). https://doi.org/10.1134/S1070363210030382

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363210030382

Keywords

Navigation