Skip to main content
Log in

Chemistry of Oxadiazole Analogues: Current Status and Applications

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Oxadiazoles are heterocyclic compounds in numerous approved, and experimental drugs, bioactive molecules, liquid crystals, diodes and in solar cell applications. It is one of the primary molecules studied in recent times and is a vital molecule employed in medicinal-chemistry for the preparation of anticancer, anti-HIV, anti-TB, anti-hepatitis etc. Research in the chemistry of the oxadiazole derivatives has been developed with the evolution of each application area and the need for target molecules with specific properties. A large number of in vivo applications for the oxadiazole analogues have also been performed. Presently, it has also been introduced as both auxiliary acceptor and spacer in dye-sensitized solar cell study with significant efficiency. Extensive literature has been documented the different applications of this versatile scaffold. The current review described some critical synthetic approaches to form such a vital moiety along with its derivatives and discussed its diverse applications, which includes the moiety in pharmacological activities, diode, liquid crystal, and solar cell fields. The review also describes some advancement in the field from our group, and also, the scope of the further study has been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Arora, P., Arora, V., Lamba, H., and Wadhwa, D., Int. J. Pharm. Sci. Res., 2012, vol. 3, pp. 2947–2955. https://doi.org/10.13040/IJPSR.0975-8232.3(9).2947-54

    Article  Google Scholar 

  2. Czarnik AW., Acc. Chem. Res., 1996, vol. 29, pp. 112–113. https://doi.org/10.1021/ar950256n

    Article  CAS  Google Scholar 

  3. Katritzky, A.R., Ley, S.V., Meth-Cohn, O., and Rees, C.W., Pergamon Publisher, 1995. ISBN-13: 978-0080406046.

  4. Paraschivescu, C.C., Păun, A., and Matache, M., Targets Heterocycl. Syst., 2016, vol. 20, pp. 174–196. http://dx.medra.org/10.17374/targets.2017.20.174.

    Google Scholar 

  5. Wei, H., He, C., Zhang, J., and Shreeve, Jn.M., Angew. Chem., Int. Ed., 2015, vol. 54, pp. 9367–9371. https://doi.org/10.1002/anie.201503532

    Article  CAS  Google Scholar 

  6. Sengupta, P., Mal, M., Mandal, S., Singh, J., and Maity, T.K., Iran. J. Pharmacol. Ther., 2008, vol. 7, pp. 165–160. http://ijpt.iums.ac.ir/article-1-173-en.html.

  7. Bhardwaj, N., Saraf, S., Sharma, P., and Kumar, P., E.-J. Chem., 2009, vol. 6, pp. 1133–1138. ISSN: 0973-4945.

  8. Zhou, Y., Wang, J., Gu, Z., et al. Chem. Rev., 2016, vol. 116, pp. 422–518. https://doi.org/10.1021/acs.chemrev.5b00392

    Article  CAS  PubMed  Google Scholar 

  9. Tan, T.M.C., Chen, Y., Kong, K.H., et al. Antiviral Res., 2006, vol. 71, pp. 7–14. https://doi.org/10.1016/j.antiviral.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  10. Zuo W-Q., Wang N-Y., Zhu Y-X., et al. RSC Adv. 2016, vol. 6, pp. 40277–40286. https://doi.org/10.1039/c6ra01179a

    Article  CAS  Google Scholar 

  11. Kemnitzer, W., Kuemmerle, J., Zhang, H.Z., et al., Bioorg. Med. Chem. Lett., 2009, vol. 19, pp. 4410–4415. https://doi.org/10.1016/j.bmcl.2009.05.052

    Article  CAS  PubMed  Google Scholar 

  12. Kumar, A., D’Souza, S.S., Gaonkar, S.L., Rai, K.M., and Salimath, B.P., Invest. New Drugs., 2008, vol. 26, pp. 425–435. https://doi.org/10.1007/s10637-008-9116-5

    Article  CAS  PubMed  Google Scholar 

  13. Kamal, A., Srikanth, Y., Shaik, TB., et al., MedChemComm., 2011, vol. 2, pp. 819–823. https://doi.org/10.1039/C0MD00177E

    Article  CAS  Google Scholar 

  14. Formagio, A.S., Tonin, L.T., Foglio, M.A., et al. Bioorg Med Chem., 2008, vol. 16, pp. 9660–9667. https://doi.org/10.1016/j.bmc.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  15. Kamal, A., Srikanth, P.S., Vishnuvardhan, M.V., et al., Bioorg. Chem., 2016, vol. 65, pp. 126–136. https://doi.org/10.1016/j.bioorg.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  16. Islam, M., Siddiqui, A.A., Rajesh, R., Bakht, A., and Goyal, S., Acta Pol. Pharm., 2008, vol. 65, pp. 441–447. https://doi.org/10.12691/ajps-2-1-1

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, D., Patel, G., Johnson, E.O., and Shah, K., Bioorg. Med. Chem. Lett., 2009, vol. 19, pp. 2739–2741. https://doi.org/10.1016/j.bmcl.2009.03.158

    Article  CAS  PubMed  Google Scholar 

  18. Ouyang, X., Piatnitski, E.L., Pattaropong, V., et al., Bioorg. Med. Chem. Lett., 2006, vol. 16, pp. 1191–1196. https://doi.org/10.1016/j.bmcl.2005.11.094

    Article  CAS  PubMed  Google Scholar 

  19. Chekler, E.L.P., Kiselyov, A.S., Ouyang, X., et al., ACS Med. Chem. Lett., 2010, vol. 1, pp. 488–492. .https://doi.org/10.1021/ml1001568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jessen, K.A., English, N.M., Yu Wang, J., et al., Mol. Cancer Ther., 2005, vol. 4, pp. 761–771. .https://doi.org/10.1158/1535-7163.MCT-04-0333

    Article  CAS  PubMed  Google Scholar 

  21. Garg, S. and Raghav, N., Bioorg. Chem., 2016, vol. 67, pp. 64–74. https://doi.org/10.1016/j.bioorg.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  22. Palmer, J.T., Hirschbein, B.L., Cheung, H., et al., Bioorg. Med. Chem. Lett., 2006, vol. 16, pp. 2909–2914. https://doi.org/10.1016/j.bmcl.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  23. Khan, M.T., Choudhary, M.I., Khan, K.M., Rani, M., and Atta ur, R., Bioorg. Med. Chem., 2005, vol. 13, pp. 3385–3395. https://doi.org/10.1016/j.bmc.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  24. Tillekeratne, L.M., Sherette, A., Fulmer, J.A., et al., Bioorg. Med. Chem. Lett., 2002, vol. 12, pp. 525–528. https://doi.org/10.1016/S0960-894X(01)00827-7

    Article  CAS  PubMed  Google Scholar 

  25. Lukas, T.J., Schiltz, G.E., Arrat, H., Scheidt, K., and Siddique, T., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 1532–1537. https://doi.org/10.1016/j.bmcl.2014.01.078

    Article  CAS  PubMed  Google Scholar 

  26. Bhatt, P., Sen, A., and Jha, A., Chem. Select., 2020, vol. 5, pp. 3347–3354. https://doi.org/10.1002/slct.201904412

    Article  CAS  Google Scholar 

  27. Bansal, S., Bala, M., Suthar, S.K., et al., Eur. J. Med. Chem., 2014, vol. 80, pp. 167–174. https://doi.org/10.1016/j.ejmech.2014.04.045

    Article  CAS  PubMed  Google Scholar 

  28. Kadi, A.A., El-Brollosy, N.R., Al-Deeb, O.A., Habib, E.E., Ibrahim, T.M., and El-Emam, A.A., Eur. J. Med. Chem., 2007, vol. 42, pp. 235–242. https://doi.org/10.1016/j.ejmech.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  29. Albratty, M., El-Sharkawy, K.A., and Alhazmi, H.A., Acta Pharm., 2019, vol. 69, pp. 261–276. https://doi.org/10.2478/acph-2019-001508

    Article  PubMed  Google Scholar 

  30. Chawla, G., Naaz, B., and Siddiqui, A.A., Mini Rev. Med. Chem., 2018, vol. 18, pp. 216–233. https://doi.org/10.2174/1389557517666170127121215

    Article  CAS  PubMed  Google Scholar 

  31. Ewies, E.F., El-Hussieny, M., El-Sayed, N.F., Fouad, M.A., Eur. J. Med. Chem., 2019, vol. 180, pp. 310–320. https://doi.org/10.1016/j.ejmech.2019.07.029

    Article  CAS  PubMed  Google Scholar 

  32. Farshori, N.N., Rauf, A, Siddiqui, M.A., Al-Sheddi, E.S., and Al-Oqail, M.M., Arab. J. Chem., 2017, vol. 10, pp. S2853–S2861. https://doi.org/10.1016/j.arabjc.2013.11.010

    Article  CAS  Google Scholar 

  33. Tantray, M.A., Khan, I., Hamid, H., Alam, M.S., Dhulap, A., and Kalam, A., Bioorg. Chem., 2018, vol. 77, pp. 393–401. https://doi.org/10.1016/j.bioorg.2018.01.040

    Article  CAS  PubMed  Google Scholar 

  34. Verma, G., Khan, M.F., Akhtar, W., Alam, M.M., Akhter, M., and Shaquiquzzaman, M., Mini Rev. Med. Chem., 2019, vol. 19, pp. 477–509. https://doi.org/10.2174/1389557518666181015152433

  35. Glomb, T., Szymankiewicz, K., and Świątek, P., Molecules., 2018, vol. 23, pp. 3361-1–3361-16. https://doi.org/10.3390/molecules23123361

  36. Sahu, V.K., Singh, A.K., and Yadav, D., Int. J. ChemTech Res., 2011, vol. 3, pp. 1362–1372. ISSN: 0974-4290.

  37. Patel, K.D., Prajapati, S.M., Panchal, S.N., and Patel, H.D., Synth. Commun., 2014, vol. 44, pp. 1859–1875. https://doi.org/10.1080/00397911.2013.879901

    Article  CAS  Google Scholar 

  38. Kumar, B., Kumar, A., Beheraand, A.K., and Raj, V., J. Cell Sci. Ther., 2016, vol. 7, pp. 233-1–233-7. https://doi.org/10.4172/2157-7013.1000233

  39. Rubina, B., Dharam, P.P., Garima, K., Ravi, K., and Manni, D., Indian J. Pharm. Educ. Res., 2019, vol. 53, pp. S1–S16. https://doi.org/10.5530/ijper.53.2s.44

    Article  CAS  Google Scholar 

  40. Bondock, S., Adel, S., Etman, H.A., and Badria, F.A., Eur. J. Med. Chem., 2012, vol. 48, pp. 192–199. https://doi.org/10.1007/s11164-015-2121-3

    Article  CAS  PubMed  Google Scholar 

  41. Desai, N., Dodiya, A.M., Rajpara, K.M., and Rupala, Y.M., J. Saudi Chem. Soc., 2014, vol. 18, pp. 255–261. https://doi.org/10.1016/j.jscs.2011.11.021

    Article  Google Scholar 

  42. Li, Y., Luo, Y., Hu, Y., et al., Bioorg. Med. Chem., 2012, vol. 20, pp. 4316–4322. https://doi.org/10.1016/j.bmc.2012.05.050

    Article  CAS  PubMed  Google Scholar 

  43. Navarrete-Vazquez, G., Marı, G., Duarte-Fajardo, Z.V., et al., Bioorg. Med. Chem., 2007, vol. 15, pp. 5502–5508. https://doi.org/10.1016/j.bmc.2007.05.053

    Article  CAS  PubMed  Google Scholar 

  44. Parikh, K. and Joshi, D., J. Chem. Sci., 2014, vol. 126, pp. 827–835. https://doi.org/10.1007/s12039-014-0625-9

    Article  CAS  Google Scholar 

  45. Raval, J.P., Akhaja, T.N., Jaspara, D.M., Myangar, K.N., and Patel, N.H., J. Saudi Chem. Soc., 2014, vol. 18, pp. 101–106. https://doi.org/10.1016/j.jscs.2011.05.019

    Article  CAS  Google Scholar 

  46. Zhang F., Wang X.-L., Shi J., et al. Bioorg. Med. Chem., 2014, vol. 22, pp. 468–477. https://doi.org/10.1016/j.bmc.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  47. De Oliveira, C.S., Lira, B.F., Barbosa-Filho, J.M., Lorenzo, J.G.F., Athayde-Filho, D., and Filgueiras, P., Molecules, 2012, vol. 17, pp. 10192–10231. https://doi.org/10.3390/molecules170910192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dawle, J., Mathapati, S., Bondge, A., and Momin, K., Asian J. Res. Chem., 2012, vol. 5, pp. 707–711. https://doi.org/10.5958/0974-4150

    Article  Google Scholar 

  49. Kudelko, A., Wróblowska, M., Jarosz, T., Łaba, K., Łapkowski, M., and Ann Arbor, M.I., Michigan Publishing, University of Michigan Library, 2015.

    Google Scholar 

  50. Nowrouzi, N., Khalili, D., and Irajzadeh, M., J. Iran. Chem. Soc., 2015, vol. 12, pp. 801–806. https://doi.org/10.1007/s13738-014-0542-3

    Article  CAS  Google Scholar 

  51. Jasiak, K., Kudelko, A., Zieliński, W., and Kuźnikb, N., Arkivoc, 2017, vol. ii, pp. 87–106. https://doi.org/10.3998/ark.5550190.p009.668

    Article  CAS  Google Scholar 

  52. Sirgamalla, R., Kommakula, A., Banoth, S., et al., Synth. Commun., 2018, vol. 48, pp. 954–962. https://doi.org/10.1080/00397911.2018.1432761

    Article  CAS  Google Scholar 

  53. Shruthi, T., Eswaran, S., Shivarudraiah, P., Narayanan, S., and Subramanian, S., Bioorg. Med. Chem. Lett., 2019, vol. 29, pp. 97–102. https://doi.org/10.1016/j.bmcl.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  54. Akram, M., Rauf, A., Saeed, A., et al., Trop. J. Pharm. Res., 2018, vol. 17, pp. 127–134. https://doi.org/10.4314/tjpr.v17i1.18

    Article  CAS  Google Scholar 

  55. Upare, A.A., Gadekar, P.K., Sivaramakrishnan, H., et al., Bioorg. Chem., 2019, vol. 86, pp. 507–512. https://doi.org/10.1016/j.bioorg.2019.01.054

    Article  CAS  Google Scholar 

  56. Lakshmithendral, K., Saravanan, K., Elancheran, R., et al., Eur. J. Med. Chem., 2019, vol. 168, pp. 1–10. https://doi.org/10.1016/j.ejmech.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  57. Baykov, S., Tarasenko, M., Zelenkov, L.E., Kasatkina, S., Savko, P., and Shetnev, A., Eur. J. Org. Chem., 2019, vol. 2019, pp. 5685–5693. https://doi.org/10.1002/ejoc.201900843

    Article  CAS  Google Scholar 

  58. Elancheran, R., Kabilan, S., Kotoky, J., Ramanathan, M., and Bhattacharjee, A., Combin. Chem. High Throughput Screen., 2019, vol. 22, pp. 307–316. https://doi.org/10.2174/1386207322666190701124

    Article  CAS  Google Scholar 

  59. Cascioferro, S., Attanzio, A., Di Sarno, V., Musella, S., Tesoriere, L., Cirrincione, G., Diana, P., and Parrino, B., Mar. Drugs, 2019, vol. 17, pp. 35-1–35-15. https://doi.org/10.3390/md17010035

  60. Benassi, A., Doria, F., and Pirota, V., Int. J. Mol. Sci., 2020, vol. 21, pp. 8692-1–8692-28. https://doi.org/10.3390/ijms21228692

  61. Biernacki, K., Daśko, M., Ciupak, O., Kubiński, K., Rachon, J., and Demkowicz, S., Pharmaceuticals, 2020, vol. 13, pp. 111 (1–45). https://doi.org/10.3390/ph13060111

  62. Polothia, R., Raolji, G.S.B., Kuchibhotla, V.S., Sheelama, K., Tuniki, B., and Thodupunuri, P., Syn. Comm. Rev., 2019, vol. 49, pp. 1603–1612.

    Article  Google Scholar 

  63. Esser, C., Lawrence, B., Sherr, D., et al., Int. J. Mol. Sci., 2018, vol. 19, pp. 3603-1–3603-8. https://doi.org/10.3390/ijms19113603

  64. Pitasse-Santos, P., Sueth-Santiago, V., and Lima, M.E., J. Braz. Chem. Soc., 2018, vol. 29, pp. 435–456. https://doi.org/10.21577/0103-5053.20170208

    Article  CAS  Google Scholar 

  65. Tamoto, N., Adachi, C., and Nagai, K., Chem. Mater., 1997, vol. 9, pp. 1077–1085. https://doi.org/10.1021/cm960391+

    Article  CAS  Google Scholar 

  66. Wu, C.-L., Chang, C.-H., Chang, Y.-T., Chen, C.-T., Chen, C.-T., and Su, C.-J., J. Mater. Chem. C, 2014, vol. 2, pp. 7188–7200. https://doi.org/10.1039/c4tc00876f

    Article  CAS  Google Scholar 

  67. Shih, C.-H., Rajamalli, P., Wu, C.-A., Hsieh, W.-T., and Cheng, C.-H., ACS Appl. Mater. Interfaces., 2015, vol. 7, pp. 10466–10474. https://doi.org/10.1021/acsami.5b01872

    Article  CAS  PubMed  Google Scholar 

  68. Shih, C.-H., Rajamalli, P., Wu, C.-A., Chiu, M.-J., Chu, L.-K., and Cheng, C.-H., J. Mater. Chem. C, 2015, vol. 3, pp. 1491–1496. https://doi.org/10.1039/C4TC02348J

    Article  CAS  Google Scholar 

  69. Fan, C., Lei, Y., Liu, Z., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 20769–20778. https://doi.org/10.1021/acsami.5b05815

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, F., Li, W., Yu, Y., et al., J. Mater. Chem. C, 2016, vol. 4, pp. 5469–5475.

    Article  CAS  Google Scholar 

  71. Zhang, J., Zhou, L., Al-Attar, H.A., et al., Adv. Funct. Mater., 2013, vol. 23, pp. 4667–4677. https://doi.org/10.1002/adfm.201300344

    Article  CAS  Google Scholar 

  72. Lehmann, M., Köhn, C., Kresse, H., and Vakhovskaya, Z., Chem. Commun., 2008, pp. 1768–1770. https://doi.org/10.1039/B718348H

  73. Qu, S., Chen, X., Shao, X., et al., J. Mater. Chem., 2008, vol. 18, pp. 3954–3964. https://doi.org/10.1039/B804189J

    Article  CAS  Google Scholar 

  74. Wang, Y., Shi, J., Chen, J., Zhu, W., and Baranoff, E., J. Mater. Chem. C. 2015, vol. 3, pp. 7993–8005. https://doi.org/10.1039/c5tc01565k

    Article  CAS  Google Scholar 

  75. Zheng, C., Yuan, A., Zhang, Z., Shen, H., Bai, S., and Wang, H., J. Fluoresc., 2013, vol. 23, pp. 785–791. https://doi.org/10.1007/s10895-013-1213-y

    Article  CAS  PubMed  Google Scholar 

  76. Liu, Q., Bian, W., Shi, H., et al., Org. Biomol. Chem., 2013, vol. 11, pp. 503–508. https://doi.org/10.1039/C2OB26888D

    Article  CAS  PubMed  Google Scholar 

  77. Li, A.F., Ruan, Y.B., Jiang, Q.Q., He, W.B., and Jiang, Y.B., Chem. Eur. J., 2010, vol. 16, pp. 5794–5802. https://doi.org/10.1002/chem.200903265

    Article  CAS  PubMed  Google Scholar 

  78. Paraschivescu, C.C., Hădade, N.D., Coman, A.G., Gautier, A., Cisnetti, F., and Matache, M., Tetrahedron Lett., 2015, vol. 56, pp. 3961–3964.

    Article  CAS  Google Scholar 

  79. Kim, T.H., Lee, C.-H., Kwak, C.G., Choi, M.S., Park, W.H., and Lee, T.S., Mol. Cryst. Liq. Cryst., 2007, vol. 463, pp. 255/[537]–261/[543]. https://doi.org/10.1080/15421400601028054

  80. Tang, L., Zheng, Z., Zhong, K., and Bian, Y., Tetrahedron Lett., 2016, vol. 57, pp. 1361–1364. https://doi.org/10.1016/j.tetlet.2015.05.005

    Article  CAS  Google Scholar 

  81. Carli, S., Baena, J.P.C., Marianetti, G., et al., ChemSusChem., 2016, vol. 9, pp. 657–661. https://doi.org/10.1002/cssc.201501665

    Article  CAS  PubMed  Google Scholar 

  82. Mane, S.B., Cheng, C.-F., Sutanto, A.A., Datta, A., Dutta, A., and Hung, C.-H., Tetrahedron, 2015, vol. 71, pp. 7977–7984. https://doi.org/10.1016/j.tet.2015.08.068

    Article  CAS  Google Scholar 

  83. Srinivas, K., Sivakumar, G., Kumar, C.R., et al., Synth. Met., 2011, vol. 161, pp. 1671–1681. https://doi.org/10.1016/j.synthmet.2011.06.001

    Article  CAS  Google Scholar 

  84. Wang, Z., Zhang, H., Killian, B.J., et al., Eur. J. Org. Chem., 2015, vol. 2015, pp. 5183–5188. https://doi.org/10.1002/ejoc.201500583

    Article  CAS  Google Scholar 

  85. Dacons, J.C. and Sitzmann, M.E., J. Heterocycl. Chem., 1977, vol. 14, pp. 1151–1155. https://doi.org/10.1002/jhet.5570140706

    Article  CAS  Google Scholar 

  86. Klapötke, T.M. and Witkowski, TG., ChemPlusChem., 2016, vol. 81, pp. 357–360. https://doi.org/10.1002/cplu.201600078

    Article  CAS  PubMed  Google Scholar 

  87. Rashid, M., Husain, A., and Mishra, R., Eur. J. Med. Chem., 2012, vol. 54, pp. 855–866. https://doi.org/10.1016/j.ejmech.2012.04.027

    Article  CAS  PubMed  Google Scholar 

  88. Chrysina, E.D., Kosmopoulou, M.N., Tiraidis, C., et al., Protein Sci., 2005, vol. 14, pp. 873–888. https://doi.org/10.1110/ps.041216105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. El-Emam, A.A., Al-Deeb, O.A., Al-Omar, M., and Lehmann, J., Bioorg. Med. Chem., 2004, vol. 12, pp. 5107–5113. https://doi.org/10.1016/j.bmc.2004.07.033

    Article  CAS  PubMed  Google Scholar 

  90. Almasirad, A., Tabatabai, S.A., Faizi, M., et al., Bioorg. Med. Chem. Lett., 2004, vol. 14, pp. 6057–6059. https://doi.org/10.1016/j.bmcl.2004.09.072

    Article  CAS  PubMed  Google Scholar 

  91. Kucukguzel, S.G., Oruc, E.E., Rollas, S., Sahin, F., and Ozbek, A., Eur. J. Med. Chem., 2002, vol. 37, pp. 197–206. https://doi.org/10.1016/S0223-5234(01)01326-5

    Article  CAS  PubMed  Google Scholar 

  92. Glomb, T., Szymankiewicz, K., and Świątek, P., Molecules, 2018, vol. 23, pp. 3361 (1–16). https://doi.org/10.3390/molecules23123361

  93. Boström, J., Hogner, A., Llinàs, A., Wellner, E., and Plowright, A.T., J. Med. Chem., 2012, vol. 55, pp. 1817–1830. https://doi.org/10.1021/jm2013248

    Article  CAS  PubMed  Google Scholar 

  94. Verma, G., Chashoo, G., Ali, A., et al., Bioorg. Chem., 2018, vol. 77, pp. 106–124. https://doi.org/10.1016/j.bioorg.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  95. Narella, S.G., Shaik, M.G., Mohammed, A., Alvala, M., Angeli, A., and Supuran, C.T., Bioorg. Chem., 2019, vol. 87, pp. 765–772. https://doi.org/10.1016/j.bioorg.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  96. Boraei, A.T.A., Ashour, H.K., El Tamany, E.S.H., Abdelmoaty, N., El-Falouji, A.I., and Gomaa, M.S., Bioorg. Chem., 2019, vol. 85, pp. 293–307. https://doi.org/10.1016/j.bioorg.2018.12.039

    Article  CAS  PubMed  Google Scholar 

  97. Fathi, M.A.A., Abd El-Hafeez, A.A., Abdelhamid, D., Abbas, S.H., Montano, M.M., and Abdel-Aziz, M., Bioorg. Chem., 2019, vol. 84, pp. 150–163. https://doi.org/10.1016/j.bioorg.2018.11.032

    Article  CAS  PubMed  Google Scholar 

  98. Ananth, A.H., Manikandan, N., Rajan, RK., et al., Chem. Biodiversity, 2020, vol. 17, e1900659. https://doi.org/10.1002/cbdv.201900659

    Article  CAS  Google Scholar 

  99. Lakshmithendral, K., Saravanan, K., Elancheran, R., et al., Eur. J. Med. Chem., 2019, vol. 168, pp. 1–10. https://doi.org/10.1016/j.ejmech.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, S., Luo, Y., He, L.Q., et al., Bioorg. Med. Chem., 2013, vol. 21, pp. 3723–3729. https://doi.org/10.1016/j.bmc.2013.04.043

    Article  CAS  PubMed  Google Scholar 

  101. Abd El-Meguid, E.A., Awad, H.M., and Anwar, M.M., Russ. J. Gen. Chem., 2019, vol. 89, pp. 348–356. https://doi.org/10.1134/S1070363219020282

    Article  CAS  Google Scholar 

  102. Abdel-Aziz, M., Metwally, K.A., Gamal-Eldeen, A.M., and Aly, O.M., Anticancer Agents Med. Chem., 2015, vol. 16, pp. 269–277. https://doi.org/10.2174/1871520615666150907093855

    Article  CAS  PubMed  Google Scholar 

  103. Chi, K.Q., Wei, Z.Y., Wang, K.S., et al., Bioorg. Chem., 2017, vol. 75, pp. 157–169. https://doi.org/10.1016/j.bioorg.2017.09.013

    Article  CAS  PubMed  Google Scholar 

  104. Kumar, A., D’Souza, S.S., Nagaraj, S.R., Gaonkar, S.L., Salimath, B.P., and Rai, K.M., Cancer Chemother. Pharmacol., 2009, vol. 64, pp. 1221–1233. https://doi.org/10.1007/s00280-009-0992-y

    Article  CAS  PubMed  Google Scholar 

  105. Rajak, H., Agarawal, A., Parmar, P., et al., Bioorg. Med. Chem. Lett., 2011, vol. 21, pp. 5735–5738. https://doi.org/10.1016/j.bmcl.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  106. Moniot, S., Forgione, M., Lucidi, A., et al., Med. Chem., 2017, vol. 60, pp. 2344–2360. https://doi.org/10.1021/acs.jmedchem.6b01609

    Article  CAS  Google Scholar 

  107. Khanam, R., Ahmad, K., Hejazi, I.I., et al., Cancer Chemother. Pharmacol., 2017, vol. 80, pp. 1027–1042. https://doi.org/10.1007/s00280-017-3414-6

    Article  CAS  PubMed  Google Scholar 

  108. Altıntop, M.D., Sever, B., Akalın Çiftçi, G., Turan-Zitouni, G., Kaplancıklı, Z.A., and Özdemir, A., Molecules, 2018, vol. 23, pp. 1–6. https://doi.org/10.3390/molecules23061318

    Article  CAS  Google Scholar 

  109. Zhang, Z.M., Zhang, X.W., Zhao, Z.Z., et al., Bioorg. Med. Chem., 2012, vol. 20, pp. 3359–3367.

    Article  CAS  Google Scholar 

  110. Norouzi, S., Norouzi, M., Amini, M., et al., Asian J. Chem., 2009, vol. 21, pp. 7403.

    Google Scholar 

  111. Balaji, K., Bhatt, P., and Jha, A., Drug Res. (Stuttg.), 2016, vol. 66, pp. 587–591. https://doi.org/10.1055/s-0042-112028

    Article  CAS  Google Scholar 

  112. Wang, J., Liao, L., and Li, Y., Nano Lett., 2018, vol. 18, pp. 7060–7065. https://doi.org/10.1021/acs.nanolett.8b03065

    Article  CAS  PubMed  Google Scholar 

  113. Bhatt, P., Kumar, M., and Jha, A., Mol. Diversity, 2018, vol. 22, pp. 827–840. https://doi.org/10.1007/s11030-018-9832-5

    Article  CAS  Google Scholar 

  114. Khanam, R., Hejazi, I.I., Shahabuddin, S., Bhat, A.R., and Athar, F., J. Pharm. Anal., 2019, vol. 9, pp. 133–141. https://doi.org/10.1016/j.jpha.2018.12.002

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the GITAM (Deemed to be University) for providing instrumental and computational facilities.

Funding

We thank the Department of Science and Technology, India, under DST-FIST Program 2014 with project no. SR/FST/ETI-373/2016.

Author information

Authors and Affiliations

Authors

Contributions

Anjali Jha and Anik Sen contributed equally to the study.

Corresponding author

Correspondence to Rama Rao Malla.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain studies that use humans and animals as objects of research.

Conflict of Interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjali Jha, Sen, A. & Malla, R.R. Chemistry of Oxadiazole Analogues: Current Status and Applications. Russ J Bioorg Chem 47, 670–680 (2021). https://doi.org/10.1134/S1068162021030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021030092

Keywords:

Navigation