Skip to main content
Log in

Identification and Characteristics of Batrachuperus karlschmidti miRNA Using Illumina Deep Sequencing

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play critical roles in regulating many biological processes of eukaryotes. Batrachuperus karlschmidti, as an endangered amphibian species of salamander endemic to China, has attracted much attention because of its high values for paleontology evolutionary history research and decreasing population size. Most miRNAs have been identified in animals, no study is available concerning the miRNAs in B. karlschmidti. Herein, deep sequencing technology was used to identify and analyze miRNAs in B. karlschmidti. Totally, 13 377 954 reads were yielded. Of them, 2 724 630 unique reads representing 866 known and three novel miRNAs were identified. All these identified miRNAs were also verified using stem-loop qRT-PCR test method. Additionally, 5452 candidate target genes were predicted. GO and KEGG pathway analysis showed that the majority of targets were involved in a broad range of biological processes and metabolic pathways. Results also revealed that certain miRNA target genes are transcription factors, which might be associated with environmental adaptation of B. karlschmidti. Overall, our results provided the first large-scale identification and characterization of miRNAs in B. karlschmidti. Discovery of miRNAs in B. karlschmidti contributes to a better understanding of the complex roles of miRNA-mediated regulatory networks in gene expression in regulating diverse biological processes and greatly facilitates further functional studies on miRNAs in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Berezikov, E., Cuppen, E., Plasterk, R.H, Nat. Genet., 2006, vol. 38, suppl., pp. S2–S7.

    Article  CAS  PubMed  Google Scholar 

  2. Wu, K., He, J., Pu, W., et al., Genomics, Proteomics Bioinf., 2018, vol. 16, pp. 120–126.

    Article  Google Scholar 

  3. Abak, A., Amini, S., Sakhinia, E., et al., Eur. Rev. Med. Pharmacol. Sci., 2018, vol. 22, pp. 3094–3117.

    CAS  PubMed  Google Scholar 

  4. Yao, S., Biol. Proced. Online, 2016, vol. 18, p. 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piwecka, M., Glazar, P., Hernandez-Miranda, L.R., et al., Science, 2017, no. 357, p. 6357.

  6. Qiu, Z.A. and He, G.P., Am. J. Transl. Res., 2016, vol. 8, pp. 4320–4328.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, R.C., Feinbaum, R.L., and Ambros, V., Cell, 1993, vol. 75, pp. 843–854.

    Article  CAS  PubMed  Google Scholar 

  8. Reinhart, B.J., Slack, F.J., Basson, M., et al., Nature, 2000, vol. 403, pp. 901–906.

    Article  CAS  PubMed  Google Scholar 

  9. Fu, J. and Zeng, X., Mol. Ecol., 2008, vol. 17, pp. 1469–1488.

    Article  CAS  PubMed  Google Scholar 

  10. Huang, Z.S., Yu, F.L., Gong, H.S., et al., Sci. Rep., 2017, vol. 7, p. 1871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jiang, J.P., Jia, J., Zhang, M., et al., Peer J., 2018, vol. 6, e4517.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Che, R., Sun, Y., Wang, R., et al., PLoS One, 2014, vol. 9, e87 940.

    Article  CAS  Google Scholar 

  13. Guan, D.L. and Xu, S.Q., Mitochondrial DNA A DNA Mapp. Seq. Anal., 2016, vol. 27, pp. 4052–4053.

    CAS  PubMed  Google Scholar 

  14. Lu, B., Zheng, Y., Murphy, R.W., et al., Mol. Ecol., 2012, no. 21, pp. 3308–3324.

  15. Li, R., Li, Y., Kristiansen, K., et al., Bioinformatics, 2008, vol. 24, pp. 713–714.

    Article  CAS  PubMed  Google Scholar 

  16. Hou, L., Ji, Z., Wang, G., et al., PLoS One, 2018, vol. 13. e0 193 371.

    Article  CAS  Google Scholar 

  17. Ju, Z., Jiang, Q., Liu, G., et al., Anim. Genet., 2018, vol. 49, pp. 3–18.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, Y., Ren, H.T., Xiong, J.L., et al., Genomics, 2017, vol. 109, pp. 258–264.

    Article  CAS  PubMed  Google Scholar 

  19. Castellano, L., Rizzi, E., Krell, J., et al., BMC Genomics, 2015, vol. 16, p. 100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Klattenhoff, C. and Theurkauf, W., Development, 2008, vol. 135, pp. 3–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ji, Z., Wang, G., Xie, Z., et al., Mol. Biol. Rep., 2012, vol. 39, pp. 9361–9371.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, T., Hu, J., Zuo, Y., et al., Mol.Genet. Genomics, 2016, vol. 291, pp. 587–596.

    Google Scholar 

  23. Kim, J.H., Lee, D.K., Kim, J., et al., Cell Death Dis., 2017, vol. 8, e2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, X., Pang, Y.Y., He, R.Q., et al., FEBS Open Biol., 2018, vol. 8, pp. 64–84.

    Article  CAS  Google Scholar 

  25. Shrestha, A., Mukhametshina, R.T., Taghizadeh, S., et al., Dev. Dyn., 2017, vol. 246, pp. 285–290.

    Article  CAS  PubMed  Google Scholar 

  26. Yu, Q., Xiang, L., Yin, L., et al., Cell Prolif., 2017, vol. 50, e12 384.

    Article  CAS  Google Scholar 

  27. Wang, J., Wang, H.S., and Su, Z.B., Cell Physiol. Biochem., 2018. vol. 47, pp. 1682–1695.

    Article  CAS  PubMed  Google Scholar 

  28. Yin, V.P., Thomson, J.M., Thummel, R., et al., Genes Dev., 2008, vol. 22, pp. 728–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhattacharya, M., Sharma, A.R., Sharma, G., et al., Protoplasma, 2017, vol. 254, pp. 17–31.

    Article  CAS  PubMed  Google Scholar 

  30. Huang, M.B., Xu, H., Xie, S.J., et al., PLoS One, 2011. vol. 6, e29 173.

    Article  CAS  Google Scholar 

  31. Munch, E.M., Harris, R.A., Mohammad, M., et al., PLoS One, 2013, vol. 8, e50 564.

    Article  CAS  Google Scholar 

  32. Wei, Z., Liu, X., Feng, T., et al., Int. J. Biol. Sci., 2011, vol. 7, pp. 180–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, B.H., Pan, X.P., Cox, S.B., et al., Cell Mol. Life Sci., 2006, vol. 63, pp. 246–254.

    Article  CAS  PubMed  Google Scholar 

  34. Varkonyi-Gasic, E. and Hellens, R.P., Methods Mol. Biol., 2011, vol. 744, pp. 145–157.

    Article  CAS  PubMed  Google Scholar 

  35. Fish, J.E., Santoro, M.M., Morton, S.U., et al., Dev. Cell, 2008, vol. 15, pp. 272–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui, C., Yu, J., Huang, S., et al., Cell Physiol. Biochem., 2014, vol. 33, pp. 1698–1714.

    Article  CAS  PubMed  Google Scholar 

  37. O’Brien, J.H., Hernandez-Lagunas, L., Artinger, K.B., et al., J. Cell Sci., 2014, vol. 127, pp. 2291–2301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tang, Z., Liu, N., Luo, L., et al., Int. J. Mol. Sci., 2017, vol. 18, p. 727.

    Article  PubMed Central  CAS  Google Scholar 

  39. Langmead, B., Trapnell, C., Pop, M., et al., Genome Biol., 2009, vol. 10, p. R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wen, M., Shen, Y., Shi, S., et al., BMC Bioinformatics, 2012, vol. 13, p. 140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Friedlander, M.R., Mackowiak, S.D., Li, N., et al., Nucleic Acids Res., 2012. vol. 40, pp. 37–52.

    Article  PubMed  CAS  Google Scholar 

  42. Sui, W., Liu, F., Chen, J., et al., Methods Mol. Biol., 2014, vol. 1134, pp. 201–209.

    Article  CAS  PubMed  Google Scholar 

  43. Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  44. Grun, D., Wang, Y.L., Langenberger, D., et al., PLoS Comput. Biol., 2005, vol. 1, e13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yang, Y., Xu, Z., and Song, D., BMC Bioinformatics, 2016, vol. 17, suppl., p. 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wu, J., Mao, X., Cai, T., et al., Nucleic Acids Res., 2006, vol. 34, pp. W720–W724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Current research work was supported by the Natural Science Foundation of China (no. 31471971) and Foundation of Henan Educational Committee of China (no. 2015GGJS-054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Huang or Paul B. Brown.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This study was conducted in strict accordance with the Guidelines for the Care and Use of Laboratory Animals in Henan University of Science and Technology. All efforts were made to minimize the sufferings of the animals.

Conflict of Interests

The authors declare no conflict of interest.

Additional information

Corresponding author: e-mail: huangyong1979111@126.com; pb@purdue.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong Huang, Xiong, J., Brown, P.B. et al. Identification and Characteristics of Batrachuperus karlschmidti miRNA Using Illumina Deep Sequencing. Russ J Bioorg Chem 46, 207–216 (2020). https://doi.org/10.1134/S1068162020020193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020020193

Keywords:

Navigation