Skip to main content
Log in

VS-Cambium-Developer: A New Approach to Modeling the Functioning of the Cambial Zone of Conifers under the Influence of Environmental Factors

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

One of the fundamental problems of modern ecology is assessment of the response of woody plants to environmental effects under changing climate conditions on Earth. Various simulation models of tree ring growth can serve as an effective tool for solving this problem. We have proposed a new simulation model for the functioning of cambium, which reproduces the process of cambial activity of coniferous species of woody plants, depending on the action of the key climatic factors. It is based on the hypothesis of the presence of a cytoplasmic inhibitor of cell differentiation, the functioning of which is limited by temperature, moisture, and illumination. The new algorithm was developed based on the existing cambial block of the Vaganov–Shashkin simulation model of tree ring growth (VS-model). The model has been tested based on indirect observations of the functioning of the cambium of coniferous woody plants in southern Siberia (Republic of Khakassia), namely, on the measured seasonal cell production from 1964 to 2012. A software implementation of the new cambial model based on the R. Shiny technology, which can be easily adapted to the on-line platform of the VS-model, is proposed. The developed widgets (process visualization tools) make it possible to track the growth dynamics of the cambial zone to an accuracy of one-hundredth of a day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. For all questions concerning the launch and operation of the application, please contact the developer: Daria Belousova, daryadarya1611@gmail.com.

REFERENCES

  1. Chavchavadze, E.S., Drevesina khvoinykh. Morfologicheskie osobennosti, diagnosticheskoe znachenie (The Wood of Conifers: Morphological Features and Diagnostic Significance), Leningrad: Nauka, 1979.

  2. Larson, P.R., The Vascular Cambium. Development and structure, Berlin: Springer-Verlag, 1994.

    Book  Google Scholar 

  3. Babushkina, E.A. an Belokopytova, L.V., The cambial zone: Themain target for external factors affecting tree ring formation in conifers, Izv. Vyssh. Uchebn. Zaved. Lesnoi Zh., 2015, no. 6 (348), pp. 35–45.

  4. Bhalerao, R.P. and Fischer, U., Environmental and hormonal control of cambial stem cell dynamics, J. Exp. Bot., 2017, vol. 68, no. 1, pp. 179–87. https://doi.org/10.1093/jxb/erw466

    Article  CAS  Google Scholar 

  5. Buttò, V., Deslauriers, A., Rossi, S., et al., The role of plant hormones in tree-ring formation, Trees, 2019, vol. 34, pp. 315–335. https://doi.org/10.1007/s00468-019-01940-4

    Article  Google Scholar 

  6. Anchukaitis, K.J., Evans, M.N., Hughes, M.K., and Vaganov, E., An interpreted language implementation of the Vaganov–Shashkin tree-ring proxy system model, Dendrochronologia, 2020, vol. 60, 125677. https://doi.org/10.1016/j.dendro.2020.125677

    Article  Google Scholar 

  7. He, M., Yang, B., Brauning, A., et al., Recent advances in dendroclimatology in China, Earth Sci. Rev., 2019, vol. 194, pp. 521–535.https://doi.org/10.1016/j.earscirev.2019.02.012

    Article  CAS  Google Scholar 

  8. Tychkov, I.I., Sviderskaya, I.V., Babushkina, E.A., et al., How can the parameterization of a process-based model help us understand real tree-ring growth?, Trees, 2019, vol. 33, no. 2, pp. 345–357. https://doi.org/10.1007/s00468-018-1780-2

    Article  CAS  Google Scholar 

  9. Arzac, A., Llambi, L.D., Dulhoste, R., et al., Modelling the effect of temperature changes on plant life-form distribution across a treeline ecotone in the tropical Andes, Plant Ecol. Divers., 2019, vol. 12, no. 6, pp. 619–631. https://doi.org/10.1080/17550874.2019.1655108

    Article  Google Scholar 

  10. Popkova, M.I., Shishov, V.V., Vaganov, E.A., et al., Contribution of xylem anatomy to tree-ring width of two larch species in permafrost and non-permafrost zones of Siberia, Forests, 2020, vol. 11, p. 1343. https://doi.org/10.3390/f11121343

    Article  Google Scholar 

  11. Savidge, R.A., Xylogenesis, genetic and environmental regulation: A review, IAWA J., 1996, vol. 17, no. 3, pp. 269–310. https://doi.org/10.1163/22941932-90001580

    Article  Google Scholar 

  12. Uggla, C., Mellerowicz, E.J., and Sundberg, B., Indole-3-acetic acid controls cambial growth in Scots pine by positional signalling, Plant Physiol., 1998, vol. 117, pp. 113–121. https://dx.doi.org/10.1104%2Fpp.117.1.113.

    Article  CAS  Google Scholar 

  13. Uggla, C., Magel, E., Moritz, T., and Sundberg, B., Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine, Plant Physiol., 2001, vol. 125, pp. 2029–2039. https://doi.org/10.1104/pp.125.4.2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rossi, S., Deslauriers, A., Anfodillo, T., et al., Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length, New Phytol., 2006, vol. 170, pp. 301– 310. https://doi.org/10.1111/j.1469-8137.2006.01660.x

    Article  PubMed  Google Scholar 

  15. Chuine, I., Why does phenology drive species distribution?, Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, vol. 365, no. 1555, pp. 3149–3160. https://doi.org/10.1098/rstb.2010.0142

    Article  Google Scholar 

  16. Rossi, S., Anfodillo, T., Cufar, K., et al., A meta-analysis of cambium phenology and growth: Linear and non-linear patterns in conifers of the Northern Hemisphere, Ann. Bot., 2013, vol. 112, no. 9, pp. 1911–1920. https://doi.org/10.1093/aob/mct243

    Article  PubMed  PubMed Central  Google Scholar 

  17. Popkova, M.I., Vaganov, E.A., Shishov, V.V., et al., Modeled tracheidograms disclose drought influence on Pinus sylvestris tree-rings structure from Siberian forest–steppe, Front. Plant Sci., 2018, vol. 9, p. 1144. https://doi.org/10.3389/fpls.2018.01144

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hartmann, F.P., Rathgeber, C.B.K., Fournier, M., and Moulia, B., Modelling wood formation and structure: Power and limits of a morphogenetic gradient in controlling xylem cell proliferation and growth, Ann. For. Sci., 2017, vol. 74, no. 1, pp. 1–15. https://doi.org/10.1007/s13595-016-0613-y

    Article  Google Scholar 

  19. Deleuze, C. and Houllier, F., Connection between silviculture and wood quality through modelling approaches and simulation softwares, IAWA J., 1996, vol. 17, no. 2, pp. 105–112. https://doi.org/10.1163/22941932-90001438

    Article  Google Scholar 

  20. Deleuze, C. and Houllier, F., A simple process-based xylem growth model for describing wood microdensitometric profiles, J. Theor. Biol., 1998, vol. 193, no. 1, pp. 99–113. https://doi.org/10.1006/jtbi.1998.0689

    Article  Google Scholar 

  21. Cuny, H.E., Rathgeber, C.B.K., Lebourgeois, F., et al., Life strategies in intra-annual dynamics of wood formation: Example of three conifer species in a temperate forest in north-east France, Tree Physiol., 2012, vol. 32, no. 5, pp. 612–625. https://doi.org/10.1093/treephys/tps039

    Article  PubMed  Google Scholar 

  22. Cuny, H.E., Rathgeber, C.B.K., Kiessé, T.S., et al., Generalized additive models reveal the intrinsic complexity of wood formation dynamics, J. Exp. Bot., 2013, vol. 64, no. 7, pp. 1983–1994. https://doi.org/10.1093/jxb/ert057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rossi, S., Deslauriers, A., Anfodillo, T., et al., Evidence of threshold temperatures for xylogenesis in conifers at high altitudes, Oecologia, 2007, vol. 152, pp. 1–12. https://doi.org/10.1007/s00442-006-0625-7

    Article  PubMed  Google Scholar 

  24. Forest, L. and Demongeot, J., Cellular modelling of secondary radial growth in conifer trees: Application to Pinus radiata (D. Don), Bull. Math. Biol., 2006, vol. 68, no. 4, pp. 753–784. https://doi.org/10.1007/s11538-005-9004-5

    Article  PubMed  Google Scholar 

  25. Forest, L., Martin, J.S., Padilla, F., et al., Morphogenetic processes: application to cambial growth dynamics, Acta Biotheor., 2004, vol. 52, no. 4, pp. 415–438. https://doi.org/10.1023/B:ACBI.0000046607.17817.20

    Article  PubMed  Google Scholar 

  26. Peters, R.L., Steppe, K., Cuny, H.E., et al., Turgor: A limiting factor for radial growth in mature conifers along an elevational gradient, New Phytol., 2021, vol. 229, no. 1, pp. 213–229. https://doi.org/10.1111/nph.16872

    Article  CAS  PubMed  Google Scholar 

  27. Cabon, A., Fernández-de-Uña, L., Gea-Izquierdo, G., et al., Water potential control of turgor-driven tracheid enlargement in Scots pine at its xeric distribution edge, New Phytol., 2020, vol. 225, no. 1, pp. 209 – 221. https://doi.org/10.1111/nph.16146

    Article  PubMed  Google Scholar 

  28. Drew, D.M. and Downes, G., A model of stem growth and wood formation in Pinus radiata, Trees, 2015, vol. 29, no. 5, pp. 1395–1413. https://doi.org/10.1007/s00468-015-1216-1

    Article  Google Scholar 

  29. Vaganov, E.A., Hughes, M.K., and Shashkin, A.V., Growth dynamics of Conifer Tree Rings: Images of Past and Future Environments, Berlin: Springer-Verlag, 2006.

    Google Scholar 

  30. Shishov, V.V., Tychkov, I.I., Popkova, M.I., et al., VS-oscilloscope: A new tool to parameterize tree radial growth based on climate conditions, Dendrochronologia, 2016, vol. 39, pp. 42–50. https://doi.org/10.1016/j.dendro.2015.10.001

    Article  Google Scholar 

  31. Tumajer, J., Kašpar, J., Kuželová,H., et al., Forward modeling reveals multidecadal trends in cambial kinetics and phenology at treeline, Front. Plant Sci., 2021, vol. 12, 613643. https://doi.org/10.3389/fpls.2021.613643

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nanayakkara, B., Dickson, A.R., and Meason, D.F., Xylogenesis of Pinus radiata D. Don growing in New Zealand, Ann. For. Sci., 2019, vol. 76, no. 3, p. 74. https://doi.org/10.1007/s13595-019-0859-2

    Article  Google Scholar 

  33. Vaganov, E.A., Anchukaitis, K.J., and Evans, M.N., How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics, Dendroclimatology, 2011, vol. 11, pp. 37–75. https://doi.org/10.1007/978-1-4020-5725-0_3

    Article  Google Scholar 

  34. He, M., Shishov, V., Kaparova, N., et al., Process-based modeling of tree-ring formation and its relationships with climate on the Tibetan Plateau, Dendrochronologia, 2017, vol. 42, pp. 31–41. https://doi.org/10.1016/j.dendro.2017.01.002

    Article  Google Scholar 

  35. Jevšenak, J., Tychkov, I., Gričar, J., et al., Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia, Int. J. Biometeorol., 2021, vol. 65, no. 2, pp. 311–324. https://doi.org/10.1007/s00484-020-02033-5

    Article  PubMed  Google Scholar 

  36. Vaganov, E.A., Shashkin, A.V., Sviderskaya, I.V., and Vysotskaya, L.G., Gistometricheskii analiz rosta drevesnykh rastenii (Histometric Analysis of Woody Plant Growth), Novosibirsk: Nauka, 1985.

  37. Shiyatov, S.G., Vaganov, E.A., Kirdyanov, A.V., et al., Metody dendrokhronologii (Methods in Dendrochronology), part 1: Osnovy dendrokhronologii. Sbor i poluchenie drevesno-kol’tsevoi informatsii (Fundamentalsof Dendrochronology: Collection and Acuisition of Tree-ting Information), Krasnoyarsk: KrasGU, 2000.

  38. Grissino-Mayer, H.D., Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA, Tree-Ring Res., 2001, vol. 57, no. 2, pp. 205–221.

    Google Scholar 

  39. Dyachuk, P., Arzac, A., Peresunko, P., et al., AutoCellRow (ACR): A new tool for the automatic quantification of cell radial files in conifer images, Dendrochronologia, 2020, vol. 60, p. 125687. https://doi.org/10.1016/j.dendro.2020.125687

    Article  Google Scholar 

  40. Chang, W., Cheng, J., Allaire, J., et al., Shiny: Web Application Framework for R, R Package Version 1.0.3, 2017.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 19-04-00274 A) and performed under the State Assignment in the field of science of the Reshetnev Siberian State University (project FEFE 2020-00104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Belousova.

Ethics declarations

CONFLICT OF INTEREST

The authors confirm that they have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans or animals as study objects.

Additional information

Translated by D. Zabolotny

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousova, D.A., Shishov, V.V., Babushkina, E.A. et al. VS-Cambium-Developer: A New Approach to Modeling the Functioning of the Cambial Zone of Conifers under the Influence of Environmental Factors. Russ J Ecol 52, 358–367 (2021). https://doi.org/10.1134/S1067413621050040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413621050040

Keywords:

Navigation