Skip to main content
Log in

Autocenosis and democenosis as individual- and population-level ecological categories in terms of symbiogenesis and systems approach

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

According to the basic concept of the theory dealt with in this study, autocenosis, i.e., a self-regulatory host-symbiont system, rather than an individual, is the individual-level unit. Then, democenosis, which is a system of autocenoses, corresponds to the population level. Therefore, natural selection of autocenoses rather than individuals occurs in a democenosis, and auto- and democenoses, rather than “individuals” and “populations,” are components of food chains and webs. However, the symbiotic approach does not exclude the population paradigm and will be developed in parallel with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanasova, E.N. and Pashenova, N.V., Relationships of Xylophagous Insect-Dispersed Ophiostomatoid Fungi between Themselves and with Other Micromycetes in Siberian Conifer Species, Mikol. Fitopatol., 2005, vol. 39, no. 2, pp. 62–65.

    Google Scholar 

  • Balashov, Yu.S., Parazitizm kleshchei i nasekomykh na nazemnykh pozvonochnykh (Parasitism of Ticks and Insects in Terrestrial Vertebrates), St. Petersburg: Nauka, 2009.

    Google Scholar 

  • Beer, S.A., Biologiya vozbuditelya opistorkhoza (Biology of the Causative Agent of Opistorchiasis), Moscow: KMK, 2005.

    Google Scholar 

  • Beklemishev, V.N., On Classification of Biocenological (Symphysiological) Relationships, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1951, vol. 56, no. 5, pp. 3–30.

    Google Scholar 

  • Biologicheskii entsiklopedicheskii slovar’ (Biological Encyclopedic Dictionary) Ghilarov, M.S., Ed., Moscow: Sovetskaya Entsiklopediya, 1986.

    Google Scholar 

  • Bonfante, P., Plants, Mycorrhizal Fungi, and Endobacteria: A Dialog among Cells and Genomes, Biol. Bull., 2003, vol. 204, no. 2, pp. 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Chernousova, N.F., Petrenko, V.I., and Tolkachev, O.V., Specific Features of the Parasite Fauna of Small Mammals in Green Zones of Yekaterinburg, Agrarn. Vestn. Urala, 2008, no. 12, pp. 71–74.

  • Connor, R.C.. The Benefits of Mutualism: A Conceptual Framework, Biol. Rev., 1995, vol. 70, no. 3, pp. 427–457.

    Article  Google Scholar 

  • Dedyu, I.I., Ekologicheskii entsiklopedicheskii slovar’ (Ecological Encyclopedic Dictionary), Chisinau: MSE, 1990.

    Google Scholar 

  • Dorovskikh, G.N. and Stepanov, V.G., Host Age and Structure of Multicomponent Parasite Communities in the European Minnow, Phoxinus phoxinus L., Parazitologiya, 2007, vol. 41, no. 4, pp. 284–298.

    CAS  Google Scholar 

  • Eliseev, A.A., Ontogenetic Aspects of Parasite Fauna Formation in Cod (Gadus morhua callarias L.) from the Southeastern Baltic Sea, Mat-ly IV Vseros. shkoly po teoretich. i morskoi parazitologii (Proc. IV All-Russia Workshop in Theoretical and Marine Parasitology), Kaliningrad: Atlant-NIRO, 2007, pp. 82–85.

    Google Scholar 

  • Fadeeva, G.A., Ecological Aspects of Formation and Stability of Parasitic Systems: The Example of Sand Lizard, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Nizhni Novgorod: Nizhegorod. Gos. Univ., 1999.

    Google Scholar 

  • Gianinazzi-Pearson, V., Plant Cell Responses to Arbuscular Mycorrhizal Fungi: Getting to the Roots of the Symbiosis, Plant Cell, 1996, vol. 8, no. 10, pp. 1871–1883.

    Article  PubMed  Google Scholar 

  • Glushakova, A.M., Ivannikova, Yu.V., Naumova, E.S., et al., Large-Scale Isolation and Identification of Yeast Saccharomyces paradoxus from the Phyllosphere of Plants, Mikrobiologiya, 2007, vol. 76, no. 2, pp. 236–242.

    CAS  Google Scholar 

  • Goryacheva, I.I., Bacteria of the Genus Wolbashia: Reproductive Parasites of Arthropods, Usp. Sovrem. Biol., 2004, vol. 124, no. 3, pp. 246–259.

    Google Scholar 

  • Ilinskii, Yu.Yu. and Zakharov, I.K., Endosymbiont Wolbashia in Eurasian Populations of Drosorhila melanogaster, Genetika (Moscow), 2007, vol. 43, no. 7, pp. 905–915.

    Google Scholar 

  • Izvekova, G.I. and Korneva, Zh.V., Localization of Symbiotic Digestion Processes in Digestive-Transport Structures of Fishes and Cestodes, Usp. Sovrem. Biol., 2007, vol. 127, no. 5, pp. 502–513.

    Google Scholar 

  • Karatygin, I.V., Koevolyutsiya gribov i rastenii (Coevolution of Fungi and Plants), St. Petersburg: Gidrometeoizdat, 1993.

    Google Scholar 

  • Kataev, O.A., Golutvin, G.I., and Selikhovkin, A.V., Changes in Arthropod Communities of Forest Biocenoses under Atmospheric Pollution, Entomol. Obozr., 1983, vol. 62, no. 1, pp. 33–41.

    Google Scholar 

  • Kennedy, C.R., Ecological Animal Parasitology, Oxford: Blackwell, 1975. Translated under the title Ekologicheskaya parazitologiya, Moscow: Mir, 1978.

    Google Scholar 

  • Kirillova, N.Yu., Helminths in Small Mammals of the Middle Volga Region: Fauna and Ecology, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: INPA RAN, 2005.

    Google Scholar 

  • Kondratkov, P.V., Mycorrhiza and Vitality Structure of Cenopopulation in Leucanthemum vulgare Lam., Ekologiya, 2008, no. 5, pp. 394–397.

  • Krivolutskii, D.A. and Pokarzhevskii, A.D., The Microbial Link of Trophic Chains, Ekologiya, 1988, no. 5, pp. 10–20.

  • Moore, J., Parasites That Change the Behavior of Their Host, Sci. Am., 1984, vol. 250, no. 5, pp. 82–89.

    Article  Google Scholar 

  • Negrobov, V.V. and Khmelev, K.F., Modern Concepts of Consortiology, Vestn. Voronezh. Gos. Univ., Ser. Khim., Biol., 2000, pp. 118–121.

  • Nigmatullin, Ch.M., Migrations of Some Nektonic Animals and Their Role in Range Formation, Speciation, and Life Cycles of Parasite Populations, Mat-ly IV Vseros. shkoly po teoretich. i morskoi parazitologii (Proc. IV All-Russia Workshop in Theoretical and Marine Parasitology), Kaliningrad: AtlantNIRO, 2007, pp. 149–152.

    Google Scholar 

  • Pokarzhevskii, A.D., Van Straalen, N.M., Filimonova, Zh.V., Zaitsev, A.S., and Butovskii, R.O., Trophic Structure of Ecosystems and Ecotoxicology of Soil Microorganisms, Ekologiya, 2000, vol. 31, no. 3, pp. 211–218.

    Google Scholar 

  • Polynova, G.V., Functional Role of the Hierarchical System of Relationships in Populations of Lizards, Zh. Obshch. Biol., 1990, vol. 51, no. 3, pp. 338–352.

    Google Scholar 

  • Provorov, N.A., Genetic-Evolutionary Foundations of the Theory of Symbiosis, Zh. Obshch. Biol., 2001, vol. 62, no. 6, pp. 472–495.

    PubMed  CAS  Google Scholar 

  • Provorov, N.A., Plant-Microorganism Symbioses As an Evolutionary Continuum, Zh. Obshch. Biol., 2009, vol. 70, no. 1, pp. 10–34.

    PubMed  CAS  Google Scholar 

  • Provorov, N.A. and Dolgikh, E.A., Metabolic Integration of Organisms in Symbiotic Systems, Zh. Obshch. Biol., 2006, vol. 67, no. 6, pp. 403–422.

    PubMed  CAS  Google Scholar 

  • Pushkareva, V.I., Ermolaeva, S.A., and Litvin, V.Yu., Hydrobionts As Reservoir Hosts for Pathogens of Bacterial Sapronoses, Zool. Zh., 2010, vol. 89, no. 1, pp. 37–47.

    Google Scholar 

  • Ramenskii, L.G., On Some Principal Postulates of Modern Geobotany, Bot. Zh., 1952, vol. 37, no. 2, pp. 181–201.

    Google Scholar 

  • Rechkin, A.I., Small Mammals As Participants in Circulation of Sapronosis Pathogens in Urbanized Areas, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Nizhni Novgorod: Nizhegorod. Gos. Univ., 1997.

    Google Scholar 

  • Rusinek, O.T., Parazity ryb ozera Baikal (fauna, soobshchestva, zoogeografiya, istoriya formirovaniya) (Fish Parasites in Lake Baikal: Fauna, Communities, Zoogeography, and History), Moscow: KMK, 2007.

    Google Scholar 

  • Savinov, A.B., A New Population Paradigm: Population As a Self-Regulated Symbiotic System, Vestn. Nizhegorod. Gos. Univ., Ser. Biol., 2005, no. 1 (9), pp. 181–196.

  • Savinov, A.B., Biosistemologiya (sistemnye osnovy teorii evolyutsii i ekologii). (Biosystemology: System Foundations of the Theory of Evolution and Ecology), Nizhni Novgorod: Nizhegorod. Gos. Univ., 2006.

    Google Scholar 

  • Savinov, A.B., The Phenomenon of Obligatory Symbiosis: Organism and Population in the Light of a New Paradigm, Mat-ly IV Vseros. shkoly po teoretich. i morskoi parazitologii (Proc. IV All-Russia Workshop in Theoretical and Marine Parasitology), Kaliningrad: AtlantNIRO, 2007, pp. 186–188.

    Google Scholar 

  • Savinov, A.B., Autocenosis and Democenosis: New Categories for Parasitology, Ecology, and Evolutionary Biology, Mat-ly IV Vseros. s”ezda parazitol. o-va pri RAN (Proc. IV All-Russia Congr. Parasitol. Soc. Russ. Acad. Sci.), St. Petersburg: Lema, 2008, vol. 3, pp. 122–126.

    Google Scholar 

  • Savinov, A.B., Development of the Integrative (Symbiotic) Theory of Evolution, XXIII Lyubishchevskie chteniya (XXIII Lyubishchev Memorial Lectures), Ulyanovsk: Ulyanovsk. Gos. Ped. Univ., 2009, pp. 113–124.

    Google Scholar 

  • Semenov, A.M., Microorganism-Plant Interactions, in Ekologiya mikroorganizmov (Ecology of Microorganisms), Moscow: Academia, 2004, pp. 145–164.

    Google Scholar 

  • Simonova, E.V. and Ponomareva, O.A., The Role of Normal Microflora in the Maintenance of Human Health, Sib. Med. Zh., 2008, no. 8, pp. 20–25.

  • Soprunov, F.F., Molekulyarnye osnovy parazitizma (Molecular Bases of Parasitism), Moscow: Nauka, 1987.

    Google Scholar 

  • Strunnikova, O.K., Vishnevskaya, N.A., and Tikhonovich, I.A., Colonization of Barley Roots by Fusarium culmorum and the Influence of Pseudomonas fluorescens on This Process, Mikol. Fitopatol., 2010, vol. 44, no. 2, pp. 160–168.

    Google Scholar 

  • Turtseva, M.A., Spontaneous Microbiocenoses in Some Species of Ixodid Ticks (Ixodidae) and Gadflies (Tabanidae), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Saratov, 2005.

  • Van’kova, A.A. and Ivanov, P.I., Interaction of the Mycoplasma Acholerlasma laidlawii with the Medicago sativa-Rhizobium meliloti Symbiotic System, Agrokhimiya, 2009, no. 1, pp. 62–67.

  • Veselkin, D.V., Root System Morphology and Mycorrhiza Formation in Fir and Spruce Seedlings under Conditions of Pollution with Emissions from a Copper Smelting Plant, Lesovedenie, 2006, no. 4, pp. 52–60.

  • Wernegreen, J.J., Degnan, P.H., Lazarus, A.B., Palacios, C., and Bordenstein, S.R., Genome Evolution in an Insect Cell: Distinct Features of an Antbacterial Partnership, Biol. Bull., 2003, vol. 204, no. 2, pp. 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Yurlova, N.I., Vodyanitskaya, S.N., and Glupov, V.V., Analysis of Relationships in the Parasite-Host System (the Example of Mollusks and Trematodes), Usp. Sovrem. Biol., 2000, vol. 120, no. 6, pp. 573–580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Savinov.

Additional information

Original Russian Text © A.B. Savinov, 2011, published in Ekologiya, 2011, No. 3, pp. 163–169.

The basic concepts of this study have been presented at the 8th All-Russia Population Workshop (Nizhni Novgorod State University, 2005) and IV All-Russia Congress of the Parasitological Society of the Russian Academy of Sciences (Zoological Institute of the Russian Academy of Sciences, 2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savinov, A.B. Autocenosis and democenosis as individual- and population-level ecological categories in terms of symbiogenesis and systems approach. Russ J Ecol 42, 179–185 (2011). https://doi.org/10.1134/S1067413611030131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413611030131

Keywords

Navigation