Skip to main content
Log in

Specific Features of Reduction of Plutonium(VI) Ozonation Products in Solutions of Various Nature Alkalis

  • Published:
Radiochemistry Aims and scope

Abstract

The decomposition processes of plutonium hydroxo compounds formed under ozonation conditions in MOH (M = Li, Na, K) solutions of various concentrations were studied by UV-Vis spectroscopy using a modified nonlinear least squares method. The influence of the nature of alkali on the kinetics and mechanisms of spontaneous reduction of alkaline solutions of hydroxo compounds of plutonium(VII) was discovered. This influence and the “anomalies” in the UV-Vis spectra for ozonized plutonium solutions are associated with the presence in the systems of iron compounds in the form of impurities in commercially available LiOH, NaOH, and KOH (analytically pure, chemically pure, and ultrapure grade). Even trace amounts of impurities in alkaline solutions of plutonium compounds change the mechanisms of their reduction through the active participation of iron in redox processes. They include the oxidation of iron to ferrate(VI) ions FeO42–, followed by reduction to Fe3+, probably through the stage of formation of an intermediate with a hydroxo derivative of plutonium(VI). As a result of the analysis of large arrays of spectral data, the spectra of individual components corresponding to compounds of plutonium(VI, VII) and iron (VI) were isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Chan, W.T.K. and Wong, W.-T., Polyhedron, 2013, vol. 52, p. 43.

    Article  CAS  Google Scholar 

  2. Johnson, D.A. and Nelson, P.G., Found. Chem., 2018, vol. 20, p. 15.

    Article  CAS  Google Scholar 

  3. Ma, Sh., Zhao, L., Li, Sh., Ga, T., and Peng, F., Phys. Chem. Chem. Phys., 2023, vol. 25, p. 6726.

    Article  CAS  PubMed  Google Scholar 

  4. Kiselev, Yu.M., Russ. Chem. Rev., 2009, vol. 78, p. 1.

    Article  CAS  Google Scholar 

  5. Pyykkö, P., EPJ Web of Conf., 2016, vol. 131, AN.01001.

  6. Umemoto, K. and Saito, S., J. Phys. Soc. Jpn., 1996, vol. 65, p. 3175.

    Article  Google Scholar 

  7. Meek, T.L. and Allen, L.C., Chem. Phys. Lett., 2002, vol. 362, nos. 5, 6, p. 362.

    Article  CAS  Google Scholar 

  8. Cao, C., Vernon, R.E., Schwarz, W.H.E., and Li, J., Front. Chem., 2021, vol. 8, p. 813.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mamykin, A.V., Masyagutova, G.A., Ostakhov, S.S., and Khursan, S.L., J. Solid State Chem., 2020, vol. 290, ID 121554.

    Article  CAS  Google Scholar 

  10. Graham, L., Graudejus, O., Jha, N.K., and Bartlett, N., Coord. Chem. Rev., 2000, vol. 197, no. 1, p. 321.

    Article  CAS  Google Scholar 

  11. Selig, H., Claassen, H.H., Chernick, C.L., Malm, J.G., and Huston, J.L., Science, 1964, vol. 143, p. 1322.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, G., Zhou, M., Goettel, J.T., Schrobilgen, G.G., Su, J., Li, J., Schlöder, T., and Riedel, S., Nature, 2014, vol. 514, p. 475.

    Article  CAS  PubMed  Google Scholar 

  13. Düllmann, Ch.E., Brüchle, W., Dressler, R., Eberhardt, K., Eichler, B., Eichler, R., Gäggeler, H.W., Ginter, T.N., Glaus, F., Gregorich, K.E., Hoffman, D.C., Jäger, E., Jost, D.T., Kirbach, U.W., Lee, D.M., Nitsche, H., Patin, J.B., Pershina, V., Piguet, D., Qin, Z., Schädel, M., Schausten, B., Schimpf, E., Schött H.-J., Soverna, S., Sudowe, R., Thörle, P., Timokhin, S.N., Trautmann, N., Türler, A., Vahle, A., Wirth, G., Yakushev, A.B., and Zielinski, P.M., Nature, 2002, vol. 418, p. 859.

    Article  PubMed  Google Scholar 

  14. Chen, W., Shimada, S., and Tanaka, M., Science, 2002, vol. 295, p. 308.

    Article  CAS  PubMed  Google Scholar 

  15. Dedushenko, S.K., Kholodkovskaya, L.N., Perfiliev Yu.D., Kiselev Yu.M., Saprykyn, A.A., Kamozin, P.N., and Lemesheva, D.G., J. Alloys Comp., 1997, vol. 262–263, p. 78.

    Article  Google Scholar 

  16. Pankratov, D.A., Inorg. Mater., 2014, vol. 50, p. 82.

    Article  CAS  Google Scholar 

  17. Nikonov, M.V. and Myasoedov, B.F., Radiochemistry, 2010, vol. 52, p. 17.

    Article  CAS  Google Scholar 

  18. Nikonov, M.V., Gogolev, A.V., Tananaev, I.G., and Myasoedov, B.F., Radiochemistry, 2004, vol. 46, no. 4, p. 312.

    Article  Google Scholar 

  19. Tananaev, I.G., Nikonov, M.V., Myasoedov, B.F., and Clark, D.L., J. Alloys Comp., 2007, vol. 444, p. 668.

    Article  Google Scholar 

  20. Nikonov, M.V. and Myasoedov, B.F., Radiochemistry, 2014, vol. 56, p. 227.

    Article  CAS  Google Scholar 

  21. Krot, N.N., Gel’man, A.D., Mefod’eva, M.P., Shilov, V.P., Peretrukhin, V.F., and Spitsyn, V.I., Semivalentnoe sostoyanie neptuniya, plutoniya, ameritsiya (Semivalent State of Neptunium, Plutonium, Americium), Koltunov, V.S., Ed., Moscow: Nauka, 1977.

    Google Scholar 

  22. Krot, N.N., Gel’man, A.D., Zakharova, F.A., Peretrukhin, V.F., and Pikaev, A.K., Radiokhimiya, 1972, vol. 14, no. 3, p. 890.

    CAS  Google Scholar 

  23. Tsushima, S., J. Phys. Chem. B, 2008, vol. 112, no. 41, p. 13059.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, W., Xu, W.-H., Schwarz, W.H.E., and Li, J., Inorg. Chem., 2016, vol. 55, no. 9, p. 4616.

    Article  CAS  PubMed  Google Scholar 

  25. Lu, J.‐B., Jiang, X.‐L., Wang, J.‐Q., Hu, H.-Sh., Schwarz, W.H.E., and Li, J., J. Comp. Chem., 2022. https://doi.org/10.1002/jcc.26856

    Article  Google Scholar 

  26. Kovács, A., Struct. Chem., 2020, vol. 31, no. 4, p. 1247.

    Article  Google Scholar 

  27. Milyukova, M.S., Gusev, N.I., Sentyurin, I.G., and Sklyarenko, I.S., Analiticheskaya khimiya plutoniya (Analytical Chemistry of Pluronium), Moscow: Nauka, 1965.

    Google Scholar 

  28. Varlashkin, P.G., PhD Thesis. Knoxville: Univ. of Tennessee, 1985.

  29. Nitshe, H., Roberts, R., Becraft, K., Prussin, T., Keeney, D., Carpenter, S.A., and Hobart, D.E., Report LA-13017-MS, UC-802. US Department of Energy, 1995. .

  30. Sinkov, S.I., Report PNNL-16844, WTP-RPT-165, US Department of Energy, 2007. .

  31. Peretrukhin, V.F., Shilov, V.P., Pikaev, A.K., Contract DE-ACOS-87RL10930, WHC-EP-0817, UC-601, US Department of Energy, 1995. .

  32. Tananaev, I.G., Rozov, S.P., Mironov, V.S., Radiokhimiya, 1992, vol. 34, no. 3, p. 88.

    CAS  Google Scholar 

  33. Antonio, M.R., Williams, C.W., Sullivan, J.A., Skanthakumar, S., Hu, Y.J., and Soderholm, L., Inorg. Chem., 2012, vol. 51, no. 9, p. 5274.

    Article  CAS  PubMed  Google Scholar 

  34. Shilov, V.P., Gogolev, A.V., Fedosseev, A.M., and Ershov, B.G., Russ. Chem. Bull., 2016, vol. 65, p. 2351.

    Article  CAS  Google Scholar 

  35. Fedosseev, A.M., Bessonov, A.A., and Shilov, V.P., Radiochim. Acta, 2022, vol. 110, no. 12, p. 955.

    Article  CAS  Google Scholar 

  36. Dolzhenko, V.D., Bezzubov, S.I., and Kiselev, Yu.M., Zh. Anal. Khim., 2012, vol. 67, no. 2, p. 176.

    Google Scholar 

  37. Shashilov, V.A. and Lednev, I.K., Chem. Rev., 2010, vol. 110, p. 5692.

    Article  CAS  PubMed  Google Scholar 

  38. Mefod’eva, M.P. and Krot, N.N., Soedineniya transuranovykh elementov (Compounds of Transuranium Elements), Moscow: Nauka, 1987. .

    Google Scholar 

  39. The Chemistry of the Actinide and Transactinide Elements, Morss, L.R., Edelstein, N.M., Fuger, J., and Katz, J.J., Eds., Dordrecht: Springer, 2011.

    Google Scholar 

  40. Pikaev, A.K., Shilov, V.P., Gogolev, A.V., Russ. Chem. Rev., 1997, vol. 66, no. 9, p. 845.

    Article  CAS  Google Scholar 

  41. Pikaev, A.K., Gogolev, A.V., Shilov, V.P., Radiat. Phys. Chem., 1999, vol. 56, p. 483.

    Article  CAS  Google Scholar 

  42. Elbergali, A., Nygren, J., Kubista, M., Anal. Chim. Acta, 1999, vol. 379, p. 143.

    Article  CAS  Google Scholar 

  43. Clark, D.L., Hecker, S.S., Jarvinen, G.D., Neu, M.P., Plutonium. The Chemistry of the Actinide and Transactinide Elements, Morss, L.R. and Edelstein, J., Eds., Fuger. Springer, 2006.

    Google Scholar 

  44. Reilly, S.D. and Neu, M.P., Inorg. Chem., 2006, vol. 45, p. 1839.

    Article  CAS  PubMed  Google Scholar 

  45. Tananaev, I.G., Radiokhimiya, 1989, vol. 31, no. 1, p. 46.

    CAS  Google Scholar 

  46. Perfiliev, Yu.D., Benko, E.M., Pankratov, D.A., Sharma, V.K., and Dedushenko, S.K., Inorg. Chim. Acta, 2007, vol. 360, no. 8, p. 2789.

    Article  CAS  Google Scholar 

  47. Shilov, V.P. and Gogolev, A.V., Russ. J. Gen. Chem., 2010, vol. 80, no. 5, p. 725.

    Google Scholar 

  48. Sharma, V.K., Mácová, Z., Bouzek, K., and Millero, F.J., J. Chem. Eng. Data, 2010, vol. 55, no. 12, p. 5594.

    Article  CAS  Google Scholar 

  49. Kiselev, Yu.M., Pankratov, D.A., Ezerskaya, N.A., Kiseleva, I.N., Shundrin, L.A., and Popovich, M.P., Zh. Neorg. Khim., 1994, vol. 39, no. 8, p. 1340.

    CAS  Google Scholar 

  50. Kiselev, Yu.M., Pankratov, D.A., Shundrin, L.A., and Kiseleva, I.N., Zh. Neorg. Khim., 1996, vol. 41, no. 12, p. 2069.

    CAS  Google Scholar 

  51. Pankratov, D.A., Kiselevб Yu.M., and Komozin, P.N., Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, p. 1794.

    Article  CAS  Google Scholar 

  52. Pankratov, D.A. and Kiselev, Y.M., Russ. J. Inorg. Chem., 2009, vol. 54, no. 9, p. 1451.

    Article  Google Scholar 

  53. Shilov, V.P. and Ershov, B.G., Radiochemistry, 2020, vol. 62, p. 433. https://doi.org/10.1134/S1066362220040013

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to M.V. Nikonov, a researcher at the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, for providing samples of alkali metal hydroxides and critique feedback on the results of this work.

Funding

The work was carried out within the framework of the state theme of Lomonosov Moscow State University no. 122030200324-1: “Solving of problems of nuclear energy and environmental safety problems, as well as diagnostics of materials using ionizing radiation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pankratov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankratov, D.A., Romanchuk, A.Y., Kalmykov, S.N. et al. Specific Features of Reduction of Plutonium(VI) Ozonation Products in Solutions of Various Nature Alkalis. Radiochemistry 66, 134–144 (2024). https://doi.org/10.1134/S1066362224020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362224020024

Keywords:

Navigation