Skip to main content
Log in

Evaluation of the Relationship between Penetration Percent of Chitosan and Its Nanoparticles and Qualitative Traits in Huso huso Fillet Using 67Ga Radiolabeling of Chitosan

  • Published:
Radiochemistry Aims and scope

Abstract

The present study deals with the penetration pathways of radiolabeled chitosan and its nanoparticle complexes in refrigerated huso fillets and their relationship with main physical and chemical parameters of the fillet after exposing the fillets for 7 and 12 days to 0.5 and 1% solutions of chitosan (Ch) and its nanoparticles (ChNPs) using the 67Ga labeling technique. Radiolabeling of chitosan and its nanoparticles was performed using 67GaCl3 as the starting radionuclide form. Radiolabeled Ch and ChNPs complexes were experimentally evaluated in refrigerated huso fillets, and 1% ChNPs showed the best penetration depth. The best outcomes for the quality traits were also obtained with 1% ChNPs. ChNPs can be used to preserve the quality of the huso fillet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Hussain, M., New Zealand Food Technol., 2013, vol. 48, p. 33. https://doi.org/10.3390/foods2040585

    Article  Google Scholar 

  2. Roman, S., Sanchez-Siles, L.M., and Siegrist, M., Trends Food Sci. Technol., 2017, vol. 67, pp. 44–57. https://doi.org/10.1016/j.tifs.2017.06.010

    Article  CAS  Google Scholar 

  3. Amit, S.K., Uddin, M.M., and Rahman, R., Agricult. Food Secur., 2017, vol. 6, p. 51. https://doi.org/10.1186/s40066-017-0130-8

    Article  Google Scholar 

  4. Dehghani, S., Hosseini, S.V., and Regenstein, J.M., Food Chem., 2018, vol. 240, pp. 505–513. https://doi.org/10.1016/j.foodchem.2017.07.034

    Article  CAS  PubMed  Google Scholar 

  5. Kurita, K., Marine Biotechnol., 2006, vol. 89, pp. 2203–2226. https://doi.org/10.1007/s10126-005-0097-5

    Article  CAS  Google Scholar 

  6. Britto, D., and Assis, O.B.G., Int. J. Biol. Macromol., 2007, vol. 41, pp. 198–203. https://doi.org/10.1016/j.ijbiomac.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  7. Tian, M., Ticer, T., and Wang, Q., Small, 2020, vol. 16, no. 10, ID 1904064. https://doi.org/10.1002/smll.201904064

    Article  CAS  Google Scholar 

  8. Du, W.L., Niu, S.S., and Xu, Y.L., Carbohydr. Polym., 2009, vol. 75, pp. 385–389. https://doi.org/10.1016/j.carbpol.2008.07.039

    Article  CAS  Google Scholar 

  9. Kumar, S., Ye, F., and Dobretsov, S., Appl. Sci., 2019, vol. 9, ID 2409. https://doi.org/10.3390/app9122409

    Article  CAS  Google Scholar 

  10. Zhang, Y., Yang, Y., Tang, K., J. Appl. Polym. Sci., 2008, vol. 107, pp. 891–897. https://doi.org/10.1002/app.26402

    Article  CAS  Google Scholar 

  11. Ramezani, Z., Zarei, M., and Raminnejad, N., Food Control, 2015, vol. 51, pp. 43-48. https://doi.org/10.1016/j.foodcont.2014.11.015

    Article  CAS  Google Scholar 

  12. Hosseini, S.V., Abedian‐Kenari, A., Rezaei, M., Nazari, R.M., Feás, X., and Rabbani, M., Food Chem., 2010, vol. 118, no. 2, pp. 341–348. https://doi.org/10.1016/j.foodchem.2009.04.131

    Article  CAS  Google Scholar 

  13. Kitson, S.L., Moody, T., and Watters, W., Defacto Healthy Reputations. http://www.outsourcedpharma.com/doc/modern-developments-in-isotopic-labelling-0001.

  14. Jalilian, A.R., Yousefnia, H., Shafaii, K., Novinrouz, A., and Rajamand, A.A., Iran. J. Pharm. Res., 2012, vol. 11, no. 2, pp. 523–531. https://doi.org/10.22037/IJPR.2012.1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alishahi, A., Mirvaghefi, A., Tehrani, M.R., Farahmand, H., Shojaosadati, S.A., Dorkoosh, F.A., and Elsabee, M.Z., Food Chem., 2011, vol. 126, pp. 935–940. https://doi.org/10.1016/j.foodchem.2010.11.086

    Article  CAS  Google Scholar 

  16. Alishahi, A., Mirvaghefi, A., Tehrani, M.R., Farahmand, H., Koshio, S., Dorkoosh, F.A., and Elsabeed, M.Z., Carbohydr. Polym., 2011, vol. 86, pp. 142–146. https://doi.org/10.1016/j.carbpol.2011.04.028

    Article  CAS  Google Scholar 

  17. Akhlaghi, M., and Pourjavadi, A., Nukleonika, 2011, vol. 56, no. 1, pp. 41−47.

    CAS  Google Scholar 

  18. Goulas, A.E., and Kontominas, M.G., Food Chem., 2005, vol. 93, pp. 511–520. https://doi.org/10.1016/j.foodchem.2004.09.040

    Article  CAS  Google Scholar 

  19. Egan, H., Kirk, R., and Sawyer, R., 1997, pp. 609–634.

  20. Suvanich, V., Jahncke, M.L., and Marshall, D.L., Food Science, 2000, vol. 65, no. 1, pp. 24–29. https://doi.org/10.1111/j.1365-2621.2000.Tb15950.x

    Article  CAS  Google Scholar 

  21. Siripatrawan, U., and Noipha, S., Food Hydrocolloids, 2012, vol. 27, pp. 102–108. https://doi.org/10.1016/j.foodhyd.2011.08.011

    Article  CAS  Google Scholar 

  22. Ojagh, S.M., Rezaei, M., Razavi, S.H., and Hosseini, S.M.H., Food Chem., 2010, vol. 120, pp. 193–198. https://doi.org/10.1016/j.foodchem.2009.10.006

    Article  CAS  Google Scholar 

  23. Eymard, S., Baron, C.P., and Jacobsen, C., Food Chem., 2009, vol. 114, pp. 57–65. https://doi.org/10.1016/j.foodchem.2008.09.030

    Article  CAS  Google Scholar 

  24. Fan W., Sun J., Chen Y., Qiu, J., Zhang, Y., and Chi, Y., Food Chem., 2009, vol. 115, no. 1, pp. 66–70. https://doi.org/10.1016/j.foodchem.2008.11.060

    Article  CAS  Google Scholar 

  25. Sathivel, S., Liu, Q., Huang, J., and Prinyawiwatkul, W., J. Food Eng., 2007, vol. 83, pp. 366–373. https://doi.org/10.1016/j.jfoodeng.2007.03.009

    Article  CAS  Google Scholar 

  26. Li, T., Hu, W., Li, J., and Zhang, X., Food Control, 2011, vol. 25, no. 1, pp. 101–106. https://doi.org/10.1016/j.foodcont.2011.10.029

    Article  CAS  Google Scholar 

  27. Maghami, M., Motalebi, A.A., and Anvar, A.A., Food Sci. Nutrit., 2019, vol. 7, pp. 3030–3041. https://doi.org/10.1002/fsn3.1161

    Article  CAS  Google Scholar 

  28. .Hong, H., Zhang, Y., Sun, J., and Cai, W., Nano Today, 2009, vol. 4, no. 5, pp. 399–413. https://doi.org/10.1016/j.nantod.2009.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bunis, D., Card, C., Lin, J., and Rhee, S., eCommons. Open Scholarship at Cornell, 2012. https://hdl.handle.net/1813/29684.

Download references

ACKNOWLEDGMENTS

This research was funded by the Gorgan University of Agricultural Sciences and Natural Resource and Nuclear Science and Technology Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Alishahi or M. Heidarieh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, N.D., Alishahi, A.R., Heidarieh, M. et al. Evaluation of the Relationship between Penetration Percent of Chitosan and Its Nanoparticles and Qualitative Traits in Huso huso Fillet Using 67Ga Radiolabeling of Chitosan. Radiochemistry 64, 776–782 (2022). https://doi.org/10.1134/S1066362222060157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222060157

Keywords:

Navigation