Skip to main content
Log in

Leaching of Radioactive Waste Surrogates from a Glassy Matrix and Migration of the Leaching Products in Gneisses

  • Published:
Radiochemistry Aims and scope

Abstract

Changes in the glassy matrix containing high-level waste surrogates after 24-h heating in an autoclave at 300°С with steam at 66% relative humidity were studied. Experiments were performed with an Na–Al–P glass sample containing Cs, Sr, Ce, Nd, and U. The effect of crystallization on the leaching of the elements from the glassy matrix and the form in which the waste surrogates are released into water were determined. The transport of the leaching products in a gneiss sample taken from the core of a borehole of the Yeniseiskii site of the Nizhnekansky massif was studied. REE and U occur in the solution after leaching mainly in the colloidal form. Colloidal particles of elements exhibit high mobility in migration in the rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laverov, N.P., Velichkin, V.I., Omel’yanenko, B.I., et al., Izolyatsiya otrabotavshikh yadernykh materialov: geologo-geokhimicheskie osnovy (Isolation of Spent Nuclear Materials: Geological and Geochemical Principles), Moscow: Inst. Fiziki Zemli Ross. Akad. Nauk, 2008.

    Google Scholar 

  2. Kopyrin, A.A., Karelin, A.I., and Karelin, V.A., Tekhnologiya proizvodstva i radiokhimicheskoi pererabotki yadernogo topliva (Technology for Production and Radiochemical Reprocessing of Nuclear Fuel), Moscow: Atomenergoizdat, 2006.

    Google Scholar 

  3. Kochkin, B.T., Malkovsky, V.I., and Yudintsev, S.V., Nauchnye osnovy otsenki bezopasnosti geologicheskoi izolyatsii dolgozhivushchikh radioaktivnyikh otkhodov (Eniseiiskii proekt) (Scientific Principles of Evaluating the Safety of Geological Isolation of Long-Lived Radioactive Waste (Yenisei Project)), Moscow: Inst. Geologii Rudnykh Mestorozhdenii, Petrografii, Mineralogii i Geokhimii Ross. Akad. Nauk, 2017.

    Google Scholar 

  4. Rybal’chenko, A.I., Pimenov, M.K., Kostin, P.P., et al., Glubinnoe zakhoronenie zhidkikh radioaktivnykh otkhodov (Deep Disposal of Liquid Radioactive Waste), Moscow: IzdAT, 1994.

    Google Scholar 

  5. Krauskopf, K.B., Annu. Rev. Earth Planet. Sci., 1988, vol. 16, pp. 173–200.

    Article  CAS  Google Scholar 

  6. End points for spent nuclear fuel and high-level radioactive waste in Russia and the United States, Committee on End Points for Spent Nuclear Fuel and High-Level Radioactive Waste in Russia and the United States, Washington: National Acad., 2003.

  7. Tsebakovskaya, N.S., Utkin, S.S., Linge, I.I., and Pron’, I.A., Foreign projects for spent nuclear fuel and radioactive waste disposal. Part I, Preprint of the Nuclear Safety Institute, Russian Acad. Sci., 2017, no. IBRAE-2017-03.

    Google Scholar 

  8. Lifanov, F.A. and Karlina, O.K., Bezopasn. Yadern. Tekhnol. Okruzh. Sredy, 2012, no. 2, pp. 122–132.

    Google Scholar 

  9. Ershov, B.G., Minaev, A.A., Popov, I.B., et al., Vopr. Radiats. Bezopasn., 2005, no. 1, pp. 13–22.

    Google Scholar 

  10. Remizov, M.B., Kozlov, P.V., Logunov, M.V., et al., Vopr. Radiats. Bezopasn., 2014, no. 3, pp. 17–25.

    Google Scholar 

  11. Hench, L.L., Clark, D.E., and Harker, A.B., J. Mater. Sci., 1986, vol. 21, no. 5, pp. 1457–1478.

    Article  CAS  Google Scholar 

  12. Nuclear Waste Conditioning: A Nuclear Energy Division Monograph, Parisot, J.-F., Ed., Gif-sur-Yvette: Commissariat à l’Energie Atomique, 2009.

  13. Carter, J.T., Luptak, A.J., Gastelum, J., et al., Fuel Cycle Potential Waste Inventory for Disposition, Washington: US Department of Energy, 2012.

    Google Scholar 

  14. Tait, J.C., Hayward, P.J., and Devgun, J.C., Can. J. Civil Eng., 1989, vol. 16, no. 4, pp. 444–458.

    Article  Google Scholar 

  15. Schneider, M. and Marignac, Y., Spent Nuclear Fuel Reprocessing in France, Research Report no. 4 of Int. Panel on Fissile Materials, Princeton (USA): Princeton Univ., 2008.

    Google Scholar 

  16. Choi, J.-H., Eun, H.-Ch, Lee, T.-K., et al., J. Nucl. Mater., 2017, vol. 483, pp. 82–89.

    Article  CAS  Google Scholar 

  17. Krylova, N.V., Kulichenko, V.V., and Salamatina, R.N., At. Energ., 1990, vol. 69, no. 4, pp. 865–868.

    Article  Google Scholar 

  18. Bates, J.K., Jardine, L.J., and Steindler, M.J., Science, 1982, vol. 218, pp. 51–54.

    Article  CAS  PubMed  Google Scholar 

  19. Abrajano, T.A., Bates, J.K., and Mazer, J.J., J. Non-Cryst. Solids, 1989, vol. 108, pp. 269–288.

    Article  CAS  Google Scholar 

  20. Bartholomew, R.F., Tick, P.A., and Stooky, S.D., J. Non-Cryst. Solids, 1980, vols. 38/39, pp. 637–642.

    Google Scholar 

  21. Burns, P.C., Olson, R.A., Finch, R.J., et al., J. Nucl. Mater., 2000, vol. 278, pp. 290–300.

    Article  CAS  Google Scholar 

  22. Neeway, J., Abdelouas, A., Grambow, B., et al., J. Non-Cryst. Solids, 2012, vol. 358, pp. 2894–2905.

    Article  CAS  Google Scholar 

  23. Cassingham, N.J., Corkhill, C.L., Stennett, M.C., et al., J. Nucl. Mater., 2016, vol. 479, pp. 639–646.

    Article  CAS  Google Scholar 

  24. Yudintsev, S.V., Mal’kovskii, V.I., and Mokhov, A.V., Dokl. Earth Sci., 2016, vol. 468, no. 2, pp. 196–200.

    Google Scholar 

  25. Mal’kovsky, V.I., Yudintsev, S.V., Mokhov, A.V., and Pervukhina, A.M., At. Energy, 2018, vol. 123, no. 3, pp. 177–182.

    Article  CAS  Google Scholar 

  26. Buck, E.C. and Bates, J.K., Appl. Geochem., 1999, vol. 14, no. 5, pp. 635–653.

    Article  CAS  Google Scholar 

  27. Honeyman, B.D., Nature, 1999, vol. 397, pp. 23–24.

    Article  CAS  Google Scholar 

  28. Malkovsky, V.I. and Pek, A.A., Geol. Ore Depos., 2009, vol. 51, no. 2, pp. 79–92.

    Article  Google Scholar 

  29. Malkovsky, V., Actinide Nanoparticle Research, Kalmykov, S.N. and Denecke, M.A., Eds., Berlin: Springer, 2011, pp. 195–243.

  30. Rivkin, S.L. and Aleksandrov, A.A., Termodinamicheskie svoistva vody i vodyanogo para (Thermodynamic Properties of Water and Water Vapor), Moscow: Energiya, 1975.

    Google Scholar 

  31. DeMarsily, G., Quantitative Hydrogeology, Orlando: Academic, 1986.

    Google Scholar 

  32. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Oxford Science, 1959.

    Google Scholar 

  33. Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic, 1981.

    Google Scholar 

  34. Hölttä, P., Siitari-Kauppi, M., Hakanen, M., et al., J. Contam. Hydrol., 1997, vol. 26, pp. 135–145.

    Article  Google Scholar 

  35. Gardiner, C.W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Berlin: Springer, 1983.

    Book  Google Scholar 

  36. Bowen, B.D. and Epstein, N., J. Colloid Interface Sci., 1979, vol. 72, no. 1, pp. 81–97.

    Article  CAS  Google Scholar 

  37. Bowen, B.D., Levine, S., and Epstein, N., J. Colloid Interface Sci., 1976, vol. 54, no. 3, pp. 375–390.

    Article  Google Scholar 

  38. Byegård, J., Skarnemark, G., and Skålberg, M., Mater. Res. Soc. Symp. Proc., 1994, vol. 353, part 2, pp. 1077–1088.

    Google Scholar 

  39. Malkovsky, V.I. and Pek, A.A., Petrologiya, 1994, vol. 2, no. 6, pp. 646–652.

    Google Scholar 

  40. Laverov, N.P., Omel’yanenko, B.I., and Yudintsev, S.V., Geol. Ore Depos., 2004, vol. 46, no. 1, pp. 22–35.

    Google Scholar 

  41. Laverov, N.P., Omel’yanenko, B.I., and Yudintsev, S.V., Ross. Khim. Zh., 2010, vol. LIV, no. 3, pp. 69–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Malkovsky.

Additional information

Original Russian Text © V.I. Malkovsky, S.V. Yudintsev, E.V. Aleksandrova, 2018, published in Radiokhimiya, 2018, Vol. 60, No. 6, pp. 551–557.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkovsky, V.I., Yudintsev, S.V. & Aleksandrova, E.V. Leaching of Radioactive Waste Surrogates from a Glassy Matrix and Migration of the Leaching Products in Gneisses. Radiochemistry 60, 648–656 (2018). https://doi.org/10.1134/S1066362218060140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362218060140

Keywords

Navigation