Skip to main content
Log in

Carbon and nitrogen compounds and emission of greenhouse gases in ancient and modern soils of the Arkaim Reserve in the Steppe Trans-Ural Region

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Carbon and nitrogen compounds and the emission of CO2, CH4, and N2O were studied in the ancient buried and modern background soils developed from different parent materials in the Arkaim Reserve of Chelyabinsk oblast. The studies were performed after an 18-year-long period of absence of anthropogenic loads on the local ecosystems. Element contents in the humus horizons of the chernozems of the former plowland and pastures and of the forest soil reach 28–45.6 g/kg for Corg, 2.5–4.5 g/kg for Ntot, 140–423 mg/kg for labile carbon (Cl), 32–73 mg/kg for labile nitrogen (Nl), 350–952 mg/kg for carbon of microbial biomass (Cmic), and 38–85 mg/kg for nitrogen of microbial biomass (Nmic). The contents of different forms of C and N depend on the soil type and texture and on the type of land use, including that before reservation of the territory. The emission of greenhouse gases was examined in this area for the first time. The production of CO2 by the soil buried about 4000 years ago is an order of magnitude lower than that by the modern soil. The emission and sink of N2O are small in both modern and ancient soils. The behavior of methane is clearly different in the automorphic and hydromorphic soils: the former serve as methane sinks, whereas the latter act as methane sources. The rate of the CO2 emission from the soils is controlled by many factors, including the soil type, texture, degree of hydromorphism, composition of parent materials, and type of land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Bazilevich, Geochemistry of Soda-Saline Soils (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  2. V. N. Bashkin, Agrogeochemistry of Nitrogen (Pushchino, 1987).

    Google Scholar 

  3. L. A. Vorob’eva, Chemical Analysis of Soils (Moscow State University, Moscow, 1998) [in Russian].

    Google Scholar 

  4. T. S. Demkina, A. V. Borisov, and V. A. Demkin, “Production of CO2 by surface and buried soils of the steppe zone under native and moistened conditions,” Eurasian Soil Sci. 43 (9), 1030–1035 (2010). doi: 10.1134/S1064229310090103

    Article  Google Scholar 

  5. M. V. Glagolev and N. A. Shnyrev, “Dynamics of methane emission from natural wetlands in the summer and fall seasons (case study in the south of Tomsk oblast),” Moscow Univ. Soil Sci. Bull. 62 (1), 7–14 (2007).

    Article  Google Scholar 

  6. I. V. Yevdokimov, A. A. Larionova, M. Schmitt, V. O. Lopes de Gerenyu, and M. Bahn, “Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil,” Eurasian Soil Sci. 43 (12), 1373–1382 (2010). doi: 10.1134/S1064229310120070

    Article  Google Scholar 

  7. O. Z. Eremchenko, Natural and Anthropogenic Changes of Solonetzic Soils in the Southern Transural Area (Perm State University, Perm, 1997) [in Russian].

    Google Scholar 

  8. A. M. Ermolaev, “Dynamics of anthropogenically modified herbaceous ecosystems of different ages in the Arkaim Reserve,” in Natural Systems Southern Ural (Chelyabinsk State University, Chelyabinsk, 1999), pp. 164–183.

    Google Scholar 

  9. V. V. Zaikov, “Geological structure and minerals from the Arkaim Reserve region,” in Natural Systems of Southern Ural (Chelyabinsk State University, Chelyabinsk, 1999), pp. 5–36.

    Google Scholar 

  10. G. B. Zdanovich and I. M. Batanina, Arkaim Reserve–“Country of Towns”: Space and Images (Krokus, Chelyabinsk, 2007) [in Russian].

    Google Scholar 

  11. I. V. Ivanov and D. V. Manakhov, “The soil cover structure of chernozemic steppes in the Transural Plateau (the Arkaim Reserve),” Eurasian Soil Sci. 32 (8), 864–874 (1999).

    Google Scholar 

  12. I. V. Ivanov and S. S. Chernyanskii, “General regularities in the development of chernozems in Eurasia and evolution of chernozems in the Trans-Uralian region,” Eurasian Soil Sci. 29 (9), 973–983 (1996).

    Google Scholar 

  13. Climate of Chelyabinsk oblast, Chelyabinsk Hydrometeorological Center. http://chelpogodaru/pages/490php

  14. G. N. Kraev, E.-D. Schultze, and E. M. Rivkina, “Cryogenesis as a factor of methane distribution in layers of permafrost,” Dokl. Earth Sci. 451 (2), 882–885 (2013).

    Article  Google Scholar 

  15. V. N. Kudeyarov, Nitrogen Cycle in Soil and Efficiency of Fertilizers (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  16. V. N. Kudeyarov, “Nitrogen cycle and nitrous oxide production,” Eurasian Soil Sci. 32 (8), 892–901 (1999).

    Google Scholar 

  17. V. N. Kudeyarov, V. A. Demkin, D. A. Gilichinskii, S. V. Goryachkin, and V. A. Rozhkov, “Global climate changes and the soil cover,” Eurasian Soil Sci. 42 (9), 953–966 (2009).

    Article  Google Scholar 

  18. I. N. Kurganova and V. O. Lopes de Gerenyu, “Effect of the temperature and moisture on the N2O emission from some arable soils,” Eurasian Soil Sci. 43 (8), 919–928 (2010). doi: 10.1134/S1064229310080090

    Article  Google Scholar 

  19. I. N. Kurganova and V. O. Lopes De Gerenyu, “The stock of organic carbon in soils of the Russian federation: Updated estimation in connection with land use changes,” Dokl. Biol. Sci. 426 (1), 219–221 (2009).

    Article  Google Scholar 

  20. A. A. Larionova, A. M. Ermolaev, V. I. Nikitishen, V. O. L. de Gerenyu, and I. V. Evdokimov, “Carbon budget in arable gray forest soils under different land use conditions,” Eurasian Soil Sci. 42 (12), 1364–1373 (2009).

    Article  Google Scholar 

  21. A. V. Naumov, Soil Respiration: Components, Ecological Functions, and Geographical Regularities (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  22. N. S. Panikov, A. A. Titlyanova, M. V. Paleeva, A. M. Semenov, N. P. Mironycheva-Tokareva, V. I.Makarov, E. V. Dubinin, and S. P. Efremov, “Emission of methane by the mires of the south of Western Siberia,” Dokl. Ross. Akad. Nauk 330 (3), 388–390 (1993).

    Google Scholar 

  23. L. N. Plekhanova, V. A. Demkin, and G. B. Zdanovich, Evolution of Soils from the River Valleys of Steppe Transural Region in the Second Half of the Holocene (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  24. L. M. Polyanskaya, A. V. Golovchenko, and D. G. Zvyagintsev, “Microbial biomass in soil,” Dokl. Ross. Akad. Nauk 344 (6), 846–848 (1995).

    Google Scholar 

  25. L. V. Pomazkina, L. G. Sokolova, and E. N. Zvyagintseva, “Carbon fluxes and the carbon budget in agroecosystems on agro-gray soils of the forest-steppe in the Baikal region,” Eurasian Soil Sci. 46 (6), 704–713 (2013). doi: 10.1134/S1064229313060070

    Article  Google Scholar 

  26. V. E. Prikhodko, I. V. Ivanov, D. V. Manakhov, and E. V. Manakhova, “Soils and the soil cover of the Arkaim Reserve (steppe zone of the Trans-Ural region),” Eurasian Soil Sci. 45 (8), 725–739 (2012). doi: 10.1134/S1064229312080054

    Article  Google Scholar 

  27. V. E. Prikhodko, I. V. Ivanov, D. V. Manakhov, N. P. Gerasimenko, K. Inubushi, M. Kawahigashi, Kh. Nagano, and S. Sugihara, “Soils, vegetation, and climate of the southern Transural region in the Middle Bronze Age (by the example of the Arkaim fortress),” Eurasian Soil Sci. 46 (9), 925–934 (2014). doi: 10.1134/S1064229313090032

    Article  Google Scholar 

  28. V. E. Prikhodko, I. V. Ivanov, D. G. Zdanovich, G. B. Zdanovich, D. V. Manakhov, and K. Inubushi, {Arkaim Reserve–Enforced Settlement of the Bronze Age in Steppe Transural Region: Soil-Archeological Studies} (Moscow, 2014) [in Russian].

    Google Scholar 

  29. V. E. Prikhodko and D. V. Manakhov, “Transformation of the organic matter of steppe soils of the Trans-Ural region after their conversion into the reserved regime,” Eurasian Soil Sci. 47 (4), 236–244 (2014). doi: 10.1134/S1064229314020082

    Article  Google Scholar 

  30. E. M. Rivkina, G. N. Kraev, K. V. Krivushkin, K. S. Laurinavichyus, D. G. Fedorov-Davydov, A. L. Kholodov, V. A. Shcherbakova, and D. A. Gilichinskii, “Methane in permafrost sediments of the northeastern sector of Arctic,” Kriosfera Zemli 10 (3), 23–41 (2006).

    Google Scholar 

  31. A. V. Smagin, Gas Phase of Soils (Moscow State University, Moscow, 2005) [in Russian].

    Google Scholar 

  32. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10 (3), 215–231 (1978).

    Article  Google Scholar 

  33. Y. H. Chen and R. G. Prinn, “Estimation of atmospheric methane emission between 1996 and 2001 using a 3-D global chemical transport model,” J. Geophys. Res. 111, D10307 (2006). doi: 10.1029/2005JD006058

    Article  Google Scholar 

  34. W. Chen, B. Wolf, X. Zheng, Z. Yao, K. ButterbachBahl, N. Bruggemann, C. Liu, S. Han, and X. Han, “Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability,” Global Change Biol. 17, 2803–2816 (2011).

    Article  Google Scholar 

  35. E. A. Davidson and L. V. Verhot, “Testing the hole inthe-pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database,” Global Biogeochem. Cycles 14, 1035–104 (2000).

    Article  Google Scholar 

  36. A. J. Franzluebbers, J. A. Stuedemann, H. H. Schomberg, and S. R. Wilinson, “Soil organic C and N under long-term pasture management in the Southern Piedmont, USA,” Soil Biol. Biochem. 32, 469–478 (2000).

    Article  Google Scholar 

  37. A. Hayashi, K. Sakamoto, and T. Yoshida, “A rapid method for determination of nitrate in soil by hydrazine reduction procedure,” Soil Sci. Plant Nutr. 68, 322–326 (1997).

    Google Scholar 

  38. P. J. Hanson, N. T. Edwards, C. T. Garten, and J. A. Andrews, “Separating root and soil microbial contributions to soil respiration: a review of methods and observations,” Biogeochemistry 48, 115–146 (2000).

    Article  Google Scholar 

  39. J. Holst, C. Liu, Z. Yao, N. Bruggemann, X. Zheng, M. Giese, and K. Butterbach-Bahl, “Fluxes of nitrous oxide, methane and carbon dioxide during freezingthawing cycles in an Inner Mongolian steppe,” Plant Soil. 308, 105–117 (2008).

    Article  Google Scholar 

  40. J. Holst, C. Liu, N. Bruggemann, K. Butterbach-Bahl, X. Zheng, Y. Wang, S. Han, Z. Yao, and X. Han, “Microbial N turnover and N-oxide (N2O/NO/NO2) fluxes in semi-arid grassland of Inner Mongolia,” Ecosystems 10, 623–634 (2007).

    Article  Google Scholar 

  41. K. N. Hopfensperger, C. M. Gault, and P. M. Groffman, “Influence of plant communities and soil properties on trace gas fluxes in riparian northern hardwood forests,” For. Ecol. Manage. 258 (9), 2076–2082 (2009).

    Article  Google Scholar 

  42. K. Inubushi, Y. Furukawa, A. Hadi, E. Purnomo, and H. Tsuruta, “Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan,” Chemosphere 52, 603–608 (2003).

    Article  Google Scholar 

  43. A. Kadono, S. Funakawa, and T. Kosaki, “Factors controlling mineralization of soil organic matter in the Eurasian steppe,” Soil Biol. Biochem. 40, 947–955 (2008).

    Article  Google Scholar 

  44. G. Kaschuk, O. Alberton, and M. Hungria, “Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: inferences to improve soil quality,” Plant Soil. 338, 467–481 (2011).

    Article  Google Scholar 

  45. A. R. Moiser and C. Kroeze, “Contribution of agroecosystems to the global N2O budget,” in International Workshop on Reducing N2O Emission from Agroecosystems (Alberta Agricultural foods and rural Development, Ottawa, 1999).

    Google Scholar 

  46. A. R. Mosier, K. Bronson, D. Schimel, D. Valentine, and W. Parton, “Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands,” Nature 350, 330–332 (1991).

    Article  Google Scholar 

  47. H. Nagano, V. E. Prikhodko, S. Sugihara, D. V. Manakhov, I. V. Ivanov, M. Matsushima, S. Okitsu, E. Manakhova, G. B. Zdanovich, S. Funakawa, M. Kawahigashi, and K. Inubushi, “Microbial biomass and greenhouse gaseous dynamics of Eurasian steppe soils with different land-use histories located in Arkaim of South Urals, Russia,” Soil Sci. Plant Nutr. 58, 238–244 (2012).

    Article  Google Scholar 

  48. S. Okitsu, V. Prikhodko, M. Matsushima, and K. Inubushi, “Vegetation landscape around the Arkaim ecopreserve, southeastern Ural, Russia,” Hort. Res., No. 65, 97–101 (2011).

    Google Scholar 

  49. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass-C,” Soil Biol. Biochem. 19, 703–707 (1987).

    Article  Google Scholar 

  50. N. Wrage, J. Lauf, A. del Prado, M. Pinto, S. Pietrzak, S. Yamulki, O. Oenema, and G. Gebauer, “Distinguishing sources of N2O in European grassland by stable isotope analysis,” Rapid Commun. Mass Spectrom. 18, 1201–1207 (2004).

    Article  Google Scholar 

  51. X. Li, K. Ishikura, C. Wang, J. Yeluripati, and R. Hatano, “Hierarchical Bayesian models for soil CO2 flux using soil texture: a case study in central Hokkaido, Japan,” Soil Sci. Plant Nutr., (2014). doi: 10.1080/00380768.2014.978728

    Google Scholar 

  52. D. R. Zak, D. Tilman, R. R. Parmenter, C. W. Rice, C. M. Fisher, J. Vose, D. Milchunas, and C. W. Martin, “Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study,” Ecology 75, 2333–2347 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Inubushi.

Additional information

Original Russian Text © K. Inubushi, V.E. Prikhodko, Kh. Nagano, D.V. Manakhov, 2015, published in Pochvovedenie, 2015, No. 12, pp. 1439–1449.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inubushi, K., Prikhodko, V.E., Nagano, K. et al. Carbon and nitrogen compounds and emission of greenhouse gases in ancient and modern soils of the Arkaim Reserve in the Steppe Trans-Ural Region. Eurasian Soil Sc. 48, 1306–1316 (2015). https://doi.org/10.1134/S1064229315120091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315120091

Keywords

Navigation