Skip to main content
Log in

Phonon Spectroscopy of Low-Energy Excitations in Solid Solutions of Dielectrics in the Helium Temperature Region

  • REVIEW
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The results of studies of the transport of thermal frequency phonons in amorphous dielectrics (glasses and glass-like materials) are presented. It is shown that the formation of a plateau region in the temperature dependence of thermal conductivity at T < 10 K can be associated with the appearance of a “gap” in the spectrum of phonon states. The features of the transport characteristics of phonons in single crystals of solid solutions of aluminum-rare-earth garnets (ARGs) are analyzed in the helium temperature range in the presence of low-energy excitations of a paramagnetic nature. It is shown that under the conditions of a non-stationary process of propagation of a thermal pulse at a given thermostat temperature, it is possible to establish equilibrium in the system of nonequilibrium phonons-two-level systems (TLSs) in a sample of a certain length. It has been found that the efficiency of interaction of phonons with TLSs and their transport depend on the type, magnetic moment of the rare-earth ion, energy, and spectral features in the ARG lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. G. A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).

    Article  Google Scholar 

  2. I. B. Levinson, Zh. Eksp. Teor. Fiz. 52, 704 (1980).

    Google Scholar 

  3. D. V. Kazakovtsev and I. B. Levinson, Pis’ma Zh. Eksp. Teor. Fiz. 27 (3), 194 (1978).

    Google Scholar 

  4. S. N. Ivanov, E. N. Khazanov, and A. V. Taranov, Zh. Eksp. Teor. Fiz. 89, 1824 (1985).

    Google Scholar 

  5. R. J. Gutfeld and A. H. Nethercot, Jr., Phys. Rev. Lett. 12, 641 (1964).

    Article  Google Scholar 

  6. S. N. Ivanov, E. N. Khazanov, T. Paszkiewicz, et al., Z. Phys. B 99, 535 (1996).

    Article  Google Scholar 

  7. A. V. Taranov and E. N. Khazanov, JETP 107, 509 (2008).

    Article  Google Scholar 

  8. Yu. N. Barabanenkov, V. V. Ivanov, S. N. Ivanov, E. I. Salamatov, A. V. Taranov, E. N. Khazanov, and O. L. Khasanov, JETP 102, 114 (2006).

    Article  Google Scholar 

  9. I. E. Lezova, O. V. Karban’, A. V. Taranov, E. N. Khaza-nov, and E. V. Charnaya, JETP 130, 76 (2020).

    Article  Google Scholar 

  10. E. N. Khazanov, A. V. Taranov, R. V. Gainutdinov, M. Sh. Akchurin, T. T. Basiev, V. A. Konyushkin, P. P. Fedorov, S. V. Kuznetsov, and V. V. Osiko, JETP 110, 983 (2010).

    Article  Google Scholar 

  11. E. N. Khazanov and A. V. Taranov, J. Commun. Technol. Electron. 58, 863 (2013).

    Article  Google Scholar 

  12. E. I. Salamatov, A. V. Taranov, and E. N. Khazanov, JETP 121, 267 (2015).

    Article  Google Scholar 

  13. E. I. Salamatov, A. V. Taranov, E. N. Khazanov, E. V. Charnaya, and E. V. Shevchenko, JETP 127, 705 (2018).

    Article  Google Scholar 

  14. I. E. Lezova, E. I. Salamatov, A. V. Taranov, E. N. Khazanov, E. V. Charnaya, and E. V. Shevchenko, JETP 129, 849 (2019).

    Article  Google Scholar 

  15. A. V. Taranov, E. N. Khazanov, and E. V. Charnaya, JETP 132, 94 (2021).

    Article  Google Scholar 

  16. I. B. Levinson, Zh. Eksp. Teor. Fiz. Pis’ma Red. 37, 157 (1983).

    Google Scholar 

  17. R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

    Article  Google Scholar 

  18. W. N. Lawless, Phys. Rev. B 14, 134 (1976).

    Article  Google Scholar 

  19. U. Buchenau, Yu. M. Galperin, V. L. Gurevich, et al., Phys. Rev. B 46, 2798 (1992).

    Article  Google Scholar 

  20. M. Meissner, W. Knaak, J. P. Sethna, et al., Phys. Rev. B 32, 6091 (1985).

    Article  Google Scholar 

  21. M. Hassaine, M. A. Ramos, A. I. Krivchikov, et al., Phys. Rev. B 85, 104206 (2012).

    Article  Google Scholar 

  22. A. G. Kozorezov, S. N. Ivanov, A. V. Taranov, and E. N. Khazanov, Zh. Eksp. Teor. Fiz. 102, 600 (1992).

    Google Scholar 

  23. V. I. Kozub, A. M. Rudin, and H. Schober, Phys. Rev. B 50, 6032 (1994).

    Article  Google Scholar 

  24. V. I. Kozub and A. M. Rudin, Fiz. Tverd. Tela. 38, 337 (1996).

    Google Scholar 

  25. A. I. Krivchikov, A. N. Yushchenko, O. A. Korolyuk, et al., Phys. Rev. B 77, 024202 (2008).

    Article  Google Scholar 

  26. G. Ross, P. Andersson, and G. Backstrom, Nature 290 (5804), 322 (1981).

    Article  Google Scholar 

  27. A. I. Krivchikov, B. Ya. Gorodilov, O. A. Korolyuk, et al., Phys. Rev. B. 73, 064203 (2006).

    Article  Google Scholar 

  28. S. N. Ivanov, E. P. Smirnova, A. V. Taranov, and E. N. Khazanov, Zh. Eksp. Teor. Fiz. 115, 624 (1999).

    Google Scholar 

  29. L. Farber and P. K. Davies, J. Am. Ceram. Soc. 86 (11), 1861 (2003).

    Article  Google Scholar 

  30. V. D. Natsik, E. N. Vatazhuk, P. P. Pal’-Val’, et al., Fiz. Niz. Temp. 39, 1381 (2013).

    Google Scholar 

  31. E. I. Salamatov, J. Non-Cryst, Solids 202, 128 (1996).

    Google Scholar 

  32. E. I. Salamatov, Fiz. Tverd. Tela 33, 2601 (1991).

    Google Scholar 

  33. V. V. Ivanov, E. I. Salamatov, A. V. Taranov, and E. N. Khazanov, JETP 106, 288 (2008).

    Article  Google Scholar 

  34. A. P. Zhernov, E. I. Salamatov, and E. P. Chulkin, Phys. Stat. Solidi B 165, 355 (1991).

    Article  Google Scholar 

  35. F. Liebau, Structural Chemistry of Silicates (Springer-Verlag, Berlin, 1985; Mir, Moscow, 1988).

  36. A. A. Kaminskii, A. V. Taranov, E. N. Khazanov, and M. Sh. Akchurin, Kvant. Elektron. 42, 880 (2012).

    Article  Google Scholar 

  37. S. N. Ivanov, A. G. Kozorezov, E. N. Khazanov, et al., Zh. Exper. Tech. Fiz. 100, 1591 (1991).

    Google Scholar 

  38. E. I. Salamatov, A. V. Taranov, E. N. Khazanov, E. V. Charnaya, and E. V. Shevchenko, JETP 125, 768 (2017).

    Article  Google Scholar 

  39. E. V. Shevchenko, E. V. Charnaya, E. N. Khazanov, et al., J. Alloys and Compds 717, 183 (2017).

    Article  Google Scholar 

  40. E. V. Charnaya, E. V. Shevchenko, E. N. Khazanov, A. V. Taranov, and A. M. Ulyashev, J. Commun. Technol. Electron. 64, 811 (2019).

    Article  Google Scholar 

  41. E. I. Salamatov, Fiz. Tverd. Tela 44, 978 (2002).

    Google Scholar 

  42. S. N. Ivanov, E. N. Khazanov, A. V. Taranov, et al., Zh. Eksp. Teor. Fiz. 94, 274 (1988).

    Google Scholar 

  43. G. H. Larson and C. D. Jeffries, Phys. Rev. B 141, 461 (1966).

    Article  Google Scholar 

  44. V. A. Atsarkin, V. V. Demidov, G. A. Vasneva, et al., Phys. Rev. B 61 (22), R14944 (2000).

    Article  Google Scholar 

  45. J. C. Gill, Proc. Phys. Soc. 82, 1066 (1963).

    Article  Google Scholar 

  46. A. N. Zelikman, O. E. Krein, and G. V. Samsonov, Encyclopedia of Mechanical Engineering (Metallurgiya, Moscow, 1964).

    Google Scholar 

  47. A. Abraham and B. Blini, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970; Mir, Moscow, 1972), Vol. 1.

  48. S. E. Kumenkov and V. I. Perel’, Zh. Eksp. Teor. Fiz. 94, 346 (1988).

    Google Scholar 

  49. E. I. Salamatov, A. V. Taranov, and E. N. Khazanov, JETP 133, 340 (2021).

    Article  Google Scholar 

Download references

Funding

The study was carried out within a state task of the Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Taranov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamatov, E.I., Taranov, A.V. & Khasanov, E.N. Phonon Spectroscopy of Low-Energy Excitations in Solid Solutions of Dielectrics in the Helium Temperature Region. J. Commun. Technol. Electron. 67, 593–602 (2022). https://doi.org/10.1134/S1064226922060183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226922060183

Navigation