Skip to main content
Log in

Controlling the red boundary of the tunneling photoeffect in nanodimensional carbon structures in a broad (UV-IR) wavelength range

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The tunneling photoeffect (PE) has been studied in a microdiode with an electrostatic field localized at an emitter based on a nanodimensional carbon structure. It is established that, when the carbon nanoemitter is exposed to laser and LED radiation photons of low energy (below work function) in the spectral range from near-UV (380 nm) to near-IR (1150 nm) at micro- and milliwatt optical power, a tunneling photocurrent can be initiated by controlling the electric field strength in the emitter-anode gap. The observed phenomenon can be adequately interpreted using a modified Fowler-Nordheim equation for non-equilibrium photoelectrons. Specific features of the construction and operation of photodetectors based on the tunneling PE with a controlled long-wavelength threshold (red boundary) of photoelectron emission are considered. The bandwidth of photoelectron emitters is evaluated, and the possibility of their operation in the wavelength range from UV up to far-IR is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Nolle, Phys. Usp. 50, 1079 (2007).

    Article  ADS  Google Scholar 

  2. E. L. Nolle and M. Ya. Schelev, Tech. Phys. 50, 1528 (2005).

    Article  Google Scholar 

  3. I. E. Protsenko and A. V. Uskov, Phys. Usp. 55, 508 (2012).

    Article  ADS  Google Scholar 

  4. M. Ya. Shchelev, Phys. Usp. 55, 607 (2012).

    Article  ADS  Google Scholar 

  5. E. O. Lawrence and L. B. Linford, Phys. Rev. 36, 482 (1930).

    Article  ADS  Google Scholar 

  6. R. H. Fowler and L. Nordheim, Proc. Roy. Soc. London A 119, 173 (1928).

    Article  ADS  MATH  Google Scholar 

  7. B. Bornmann, S. Mingels, P. Serbun, et al., Proceedings of the 25 International Vacuum Nanoelectronics Conference (IVNC, July 9–13, 2012, Jeju Island, Korea), pp. 1–2; DOI: 10.1109/IVNC.2012.6316980.

  8. B. I. Gorfinkel’, N. P. Aban’shin, and A. N. Yakunin, RF Patent no. 2446506 (registered March 27, 2012).

  9. S. P. Morev, N. P. Aban’shin, B. I. Gorfinkel’, A. N. Darmaev, D. A. Komarov, A. E. Makeev, and A. N. Yakunin, J. Commun. Technol. Electron. 58, 357 (2013).

    Article  Google Scholar 

  10. V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  11. D. Vyuga, Proefschrift (Technische Universiteit Eindhoven, Eindhoven, 2006).

    Google Scholar 

  12. R. H. Good and E. W. Müller, in Handbuch der Physik, Ed. by S. Flugge (Springler-Verlag, Berlin-Gottingen-Heidelberg, 1956), Vol. 21, p. 176.

    Article  ADS  Google Scholar 

  13. A.M. Brodskii and Yu. Ya. Gurevich, Theory of Electron Emission from Metals (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  14. G. Fursey, Field Emission in Vacuum Microelectronics (Kluwer Academic-Plenum Publishers, New York, 2005).

    Google Scholar 

  15. N. P. Aban’shin, B. I. Gorfinkel’, and A. N. Yakunin, Tech. Phys. Lett. 32, 892 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Yakunin.

Additional information

Original Russian Text © G.G. Akchurin, A.N. Yakunin, N.P. Aban’shin, B.I. Gorfinkel’, G.G. Akchurin, Jr., 2013, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 39, No. 12, pp. 8–16.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akchurin, G.G., Yakunin, A.N., Aban’shin, N.P. et al. Controlling the red boundary of the tunneling photoeffect in nanodimensional carbon structures in a broad (UV-IR) wavelength range. Tech. Phys. Lett. 39, 544–547 (2013). https://doi.org/10.1134/S1063785013060151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785013060151

Keywords

Navigation