Skip to main content
Log in

Simulation of a Radio-Frequency Photogun for the Generation of Ultrashort Beams

  • Electrophysics, Electron and Ion Beams, Physics of Accelerators
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A radio-frequency photogun for the generation of ultrashort electron beams to be used in fast electron diffractoscopy, wakefield acceleration experiments, and the design of accelerating structures of the millimeter range is modeled. The beam parameters at the photogun output needed for each type of experiment are determined. The general outline of the photogun is given, its electrodynamic parameters are calculated, and the accelerating field distribution is obtained. The particle dynamics is analyzed in the context of the required output beam parameters. The optimal initial beam characteristics and field amplitudes are chosen. A conclusion is made regarding the obtained beam parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Assmann, C. Behrens, R. Brinkmann, et al., in Proc. 5th Int. Particle Accelerator Conf., Dresden, Germany, 2014, p. 1466.

  2. P. A. McIntosh, D. Angal-Kalinin, N. Bliss, et al., in Proc. 5th Int. Particle Accelerator Conf., Dresden, Germany, 2014, p. 2471.

  3. T. Vardanyan, G. Amatuni, V. Avagyan, et al., in Proc. 36th Int. Free Electron Laser Conf., Basel, Switzerland, 2014, p.561.

  4. https://www.rp-photonics.com/femtosecond_lasers.html.

  5. K.-J. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A 275, 201 (1989).

    Article  ADS  Google Scholar 

  6. D. H. Dowell and J. F. Schmerge, Phys. Rev. Spec. Top.–Accel. Beams 12, 074201 (2009).

    Article  ADS  Google Scholar 

  7. J. Teichert, R. Xiang, and W. J. Verschuur, CARE Report-05-028-PHIN.

  8. http://pbpl.physics.ucla.edu/UESDM_2012/Talks/Pengfei%20Zhu%20UESDM_2012.pdf.

  9. D. B. Williams and C. B. Carter, Transmission Electron Microscopy, 2nd ed. (Springer, 2009).

    Book  Google Scholar 

  10. D. Xiang, F. Fu, J. Zhang, et al., arXiv:1405.6445 [physics.acc-ph].

  11. W. L. Bragg, Proc. Cambridge Philos. Soc. 17, 43 (1914).

    Google Scholar 

  12. A. S. Nawaz, H. Werner, M. Hoffmann, et al., in Proc. 6th Int. Particle Accelerator Conf., Richmond, United States, 2015, p.857.

  13. I. Yu. Kostyukov and A. M. Pukhov, Phys.-Usp. 58, 81 (2015).

    Article  ADS  Google Scholar 

  14. C. Joshi and V. Malka, New J. Phys. 12, 045003 (2010).

    Article  ADS  Google Scholar 

  15. E. Esarey, Ph. Sprangle, J. Krall, and A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996).

    Article  ADS  Google Scholar 

  16. W. Lu, C. Huang, M. M. Zhou, W. B. Mori, and T. Katsouleas, Phys. Plasmas 12, 063101 (2005).

    Article  ADS  Google Scholar 

  17. A. V. Akimov, P. A. Bak, A. M. Barnyakov, et al., in Proc. 5th Int. Particle Accelerator Conf., Dresden, Germany, 2014, p.538.

  18. A. K. Vereshchagin, N. S. Vorob’ev, P. B. Gornostaev, et al., Quantum Electron. 46, 185 (2016).

    Article  ADS  Google Scholar 

  19. D. Wang, S. Antipov, C. Jing, et al., Phys. Rev. Lett. 116, 054801 (2016). doi 10.1103/PhysRevLett.116.054801

    Article  ADS  Google Scholar 

  20. P. Logatchov, K. Lotov, and A. Petrenko, Nucl. Instrum. Methods Phys. Res., Sect. A 558, 314 (2006).

    Article  ADS  Google Scholar 

  21. CERN Accelerator School: General Accelerator Physics, Ed. by P. Bryant and S. Turner (CERN, Geneva, 1985), Vol. 1, p.47.

  22. T. Wangler, Principles of RF Linear Accelerators (Wiley, 2008), pp. 341–344.

    Book  Google Scholar 

  23. T. Wangler, Principles of RF Linear Accelerators (Wiley, 2008), p.26.

    Book  Google Scholar 

  24. https://www.cst.com.

  25. http://www.desy.dempyflo/Astra_docomentation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikiforov.

Additional information

Original Russian Text © D.A. Nikiforov, A.E. Levichev, A.M. Barnyakov, A.V. Andrianov, S.L. Samoilov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 4, pp. 601–608.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, D.A., Levichev, A.E., Barnyakov, A.M. et al. Simulation of a Radio-Frequency Photogun for the Generation of Ultrashort Beams. Tech. Phys. 63, 585–592 (2018). https://doi.org/10.1134/S1063784218040163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218040163

Navigation