Skip to main content
Log in

Fabrication of composite based on GeSi with Ag nanoparticles using ion implantation

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Comparative analysis of the structural and optical properties of composite layers fabricated with the aid of implantation of single-crystalline silicon (c-Si) using Ge+ (40 keV/1 × 1017 ions/cm2) and Ag+ (30 keV/1.5 × 1017 ions/cm2) ions and sequential irradiation using Ge+ and Ag+ ions is presented. The implantation of the Ge+ ions leads to the formation of Ge: Si fine-grain amorphous surface layer with a thickness of 60 nm and a grain size of 20–40 nm. The implantation of c-Si using Ag+ ions results in the formation of submicron porous amorphous a-Si structure with a thickness of about 50 nm containing ion-synthesized Ag nanoparticles. The penetration of the Ag+ ions in the Ge: Si layer stimulates the formation of pores with Ag nanoparticles with more uniform size distribution. The reflection spectra of the implanted Ag: Si and Ag: GeSi layers exhibit a sharp decrease in the intensity in the UV (220–420 nm) spectral interval relative to the intensity of c-Si by more than 50% owing to the amorphization and structuring of surface. The formation of Ag nanoparticles in the implanted layers gives rise to a selective band of the plasmon resonance at a wavelength of about 820 nm in the optical spectra. Technological methods for fabrication of a composite based on GeSi with Ag nanoparticles are demonstrated in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www-03.ibm./press/us/en/pressrelease/47301.wss

  2. C. Claeys and E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Amsterdam, 2007).

  3. D. J. Paul, Semicond. Sci. Technol. 19, R75 (2004).

    Article  ADS  Google Scholar 

  4. T. Stoica, L. Vescan, A. Muck, B. Hollander, and G. Schope, Phys. E 16, 359 (2003).

    Article  Google Scholar 

  5. Z. F. Krasilnik, A. V. Novikov, D. N. Lobanov, K. E.Kudryavtsev, A. V. Antonov, S. V. Obolenskiy, N. D. Zakharov, and P. Werner, Semicond. Sci. Technol. 26, 014–029 (2011).

    Article  Google Scholar 

  6. N. A. Sobolev, Mater. Sci. Forum 590, 79 (2008).

    Article  Google Scholar 

  7. P. L. F. Hemment, F. Cristiano, A. Nejim, S. Lombardo, K. K. Larssen, F. Priolo, and R. C. Barklie, J. Cryst. Growth 157, 147 (1995).

    Article  ADS  Google Scholar 

  8. N. X. Chen, R. Schork, and H. Ryssel, Nucl. Instrum. Methods Phys. Res., Sect. B 96, 286 (1995).

    Article  ADS  Google Scholar 

  9. W. Y. Cheung, S. P. Wong, I. H. Wilson, and T. H. Zhang, Nucl. Instrum. Methods Phys. Res., Sect. B 101, 243 (1995).

    Article  ADS  Google Scholar 

  10. L. Calcagnile, M. G. Grimaldi, and P. Baeri, J. Appl. Phys. 76, 1833 (1994).

    Article  ADS  Google Scholar 

  11. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Book  Google Scholar 

  12. P. Spinelli and A. Polman, Opt. Express A20, 641 (2012).

  13. A. Paris, A. Vaccari, C. A. Lesina, E. Serra, and L. Calliari, Plasmonics 7, 525 (2012).

    Article  Google Scholar 

  14. A. L. Stepanov, Photonic Media with Nanoparticles Synthesized by Ion Implantation (Lambert, Saarbryukken, 2014).

    Google Scholar 

  15. R. I. Batalov, V. F. Valeev, V. I. Nuzhdin, V. V. Vorob’ev, Yu. N. Osin, D. V. Lebedev, A. A. Bukharaev, and A. L. Stepanov, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 17, 295 (2014).

    Google Scholar 

  16. A. L. Stepanov, V. I. Nuzhdin, V. F. Valeev, and Yu. N. Osin, “A method for porous silicon fabrication,” RF Patent No. 2547515 (2015).

    Google Scholar 

  17. Y. Tian, B. Gao, C. Silvera-Batista, and K. J. Ziegler, J. Nanopart. Res. 12, 2371 (2010).

    Article  Google Scholar 

  18. C. Novara, F. Petracca, A. Virga, P. Rivolo, S. Ferrero, A. Chiolerio, F. Geobaldo, S. Porro, and F. Giorgis, Nanoscale Res. Lett. 9, 527 (2014).

    Article  Google Scholar 

  19. P. I. Gaiduk and A. N. Larsen, Phys. Status Solidi A 211, 2455 (2014).

    Article  Google Scholar 

  20. V. V. Vorob’ev, Yu. N. Osin, M. A. Ermakov, V. F. Valeev, V. I. Nuzhdin, and A. L. Stepanov, Nanotekhnol.: Nauka i Proizvod. 1, 42 (2015).

    Google Scholar 

  21. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  22. http://www.srim.org

  23. J. W. Mayer, L. Eriksson, and J. A. Davies, Ion Implantation in Semiconductors (Academic, New York, 1970; Mir, Moscow, 1973).

    Book  Google Scholar 

  24. A. A. Achkeev, R. I. Khaibullin, L. R. Tagirov, A. Mackova, V. Hnatowicz, and N. Cherkashin, Phys. Solid State 53, 543 (2011).

    Article  ADS  Google Scholar 

  25. A. L. Stepanov, V. A. Zhikharev, D. E. Hole, P. D. Townsend, and I. B. Khaibullin, Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 26 (2000).

    Article  Google Scholar 

  26. M. S. Dhoubhadel, B. Rout, W. J. Lakshantha, S. K. Das, F. D’Souza, G. A. Glass, and F. D. McDaniel, AIP Conf. Proc. 1607, 16 (2014).

    Article  ADS  Google Scholar 

  27. V. V. Bazarov, V. I. Nuzhdin, V. F. Valeev, V. V. Vorob’ev, Yu. N. Osin, and A. L. Stepanov, Zh. Prikl. Spektrosk. 83 (1), 55 (2016).

    Google Scholar 

  28. V. M. Glazov and V. S. Zemskov, Physicochemical Principles of Semiconductor Doping (Nauka, Moscow, 1967).

    Google Scholar 

  29. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

    Article  ADS  Google Scholar 

  30. S. Kurtin, G. A. Shifrin, and T. C. McGill, Appl. Phys. Lett. 14, 223 (1969).

    Article  ADS  Google Scholar 

  31. A. Borghesi, G. Guizzetti, L. Nosenzo, and S. U. Campisano, Solid State Phenom. 1–2, 1 (1988).

    Article  Google Scholar 

  32. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, Appl. Phys. Lett. 72, 142 (2001).

    Article  ADS  Google Scholar 

  33. X. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, and D. J. Fray, Energy Environ. Sci. 7, 3223 (2014).

    Article  Google Scholar 

  34. A. L. Stepanov, D. E. Hole, and P. D. Townsend, J. Non-Cryst. Solids 244, 275 (1999).

    Article  ADS  Google Scholar 

  35. M. S. Dhoubhadel, W. J. Lakshantha, S. Lightbourne, F. D’Souza, B. Rout, and F. D. McDaniel, AIP Conf. Proc. 1671, 020003–1 (2015).

    Article  Google Scholar 

  36. P. Akhter, M. Huang, N. Kadakia, W. Spratt, G. Malladi, and H. Bakhru, J. Appl. Phys. 116, 113–503 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Batalov.

Additional information

Original Russian Text © R.I. Batalov, V.V. Vorobev, V.I. Nuzhdin, V.F. Valeev, R.M. Bayazitov, N.M. Lyadov, Yu.N. Osin, A.L. Stepanov, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 12, pp. 104–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batalov, R.I., Vorobev, V.V., Nuzhdin, V.I. et al. Fabrication of composite based on GeSi with Ag nanoparticles using ion implantation. Tech. Phys. 61, 1861–1867 (2016). https://doi.org/10.1134/S1063784216120069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216120069

Navigation